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ABSTRACT

A powerful way to understand a complex query is by observing

how it operates on data instances. However, specific database in-

stances are not ideal for such observations: they often include large

amounts of superfluous details that are not only irrelevant to un-

derstanding the query but also cause cognitive overload; and one

specific database may not be enough. Given a relational query, is it

possible to provide a simple and generic “representative” instance

that (1) illustrates how the query can be satisfied, (2) summarizes all

specific instances that would satisfy the query in the same way by

abstracting away unnecessary details? Furthermore, is it possible

to find a collection of such representative instances that together

completely characterize all possible ways in which the query can

be satisfied? This paper takes initial steps towards answering these

questions. We design what these representative instances look like,

define what they stand for, and formalize what it means for them

to satisfy a query in “all possible ways.” We argue that this problem

is undecidable for general domain relational calculus queries, and

develop practical algorithms for computing a minimum collection

of such instances subject to other constraints. We evaluate the effi-

ciency of our approach experimentally, and show its effectiveness

in helping users debug relational queries through a user study.

1 INTRODUCTION

A powerful way to understand a complex query is by observing how

it operates on data instances. A further in-depth approach may also

consider the provenance of the query [10, 17, 28] as an indicator how

different combinations of tuples in the database satisfy the query

and generate each result. Another approach [41] finds a minimal

satisfying instance of the query. However, these characterizations

are highly dependent on the given database instance, even when

provenance is employed. In addition, such database instances can

contain many details that divert attention from the query features

themselves. For example, some queries are satisfied by an empty

instance, but there may be other satisfying instances that are not

trivial. Thus, some parts of the query may be ignored since they

are not satisfied by the instance. Furthermore, the evaluation on

an instance leads to a satisfaction of specific combination of query

atoms, but a different combination of atoms that is not satisfied by

the specific database instance may reveal new insights. While there

are approaches to find a query solution without a given database

instance [15], they provide only one way to satisfy a query, thereby

again possibly missing different paths toward satisfying the query.

On the other hand, a single query can have infinitely many sat-

isfying instances so showing all of them will not just be confusing,

it may be impossible. Therefore, to understand all possible solu-

tions to a query, we study the question of whether it is possible

to provide a simple and generic “representative” instance that (1)
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illustrates how the query can be satisfied, and (2) summarizes all

specific instances that would satisfy the query in the same way

by abstracting away unnecessary details. Further, we ask how we

can find a collection of such representative instances that together

completely characterize all possible ways to satisfy the query.

To answer these questions, we propose a novel approach of un-

derstanding queries based on conditional instances or c-instances,

by adapting the notion of c-tables [32] from the literature on incom-

plete databases, which are abstract database instances comprising

variables (labeled nulls) along with a condition on those variables.

Thus, each c-instance can be considered a representative of all

grounded instances that replace its variables with constants that

satisfy the conditions they are involved in. However, it may be im-

possible to capture all satisfying instances with a single c-instance.

Therefore, we use the idea of coverage, borrowed from the field of

software validation [5, 42, 43], where it has been well-studied in

the context of software testing. For example, a test suite is said to

cover a function if the function is invoked during the test. This idea

can be abstracted to program flows, where an edge/branch in the

control-flow graph (see [4] for details) is said to be covered if the

edge/branch has been executed. For our use, when given a query𝑄

and a satisfying c-instance I, the atoms and conditions of 𝑄 that

are satisfied by all ground instances that I represents are said to

be covered by I. We intend to find a set of c-instances such that

for every grounded instance that satisfies 𝑄 with some coverage C,

we have a c-instance that satisfies 𝑄 with the same coverage C.

The idea of providing a compact representation of all instances

that satisfy a query is appealing not just from a theoretical perspec-

tive, but also for multiple practical reasons.

• First, this approach can be used for explaining why a given

(wrong) query is different than another (correct) one, as studied

in works on counterexamples [15, 41]. In this scenario, we are

given a query𝑄1 and another query𝑄2, the output is an instance

𝐾 such that 𝑄1 (𝐾) ≠ 𝑄2 (𝐾) (i.e., 𝐾 is a satisfying instance for

𝑄1 − 𝑄2 or 𝑄2 − 𝑄1). In an educational setting, such instances

would help instructors and students understand why a query

is wrong and debug it, without revealing the correct query to

students.

• Second, developers and data scientists who work with complex

queries can this approach to explore how various parts of the

queries can be triggered by different data, or to help them debug

or refine these queries. For example, if there are no instances that

can trigger some part of a query, it may be possible to simplify

the query to remove “dead code” that logically contradicts other

necessary conditions in the query.

• Third, this approach offers a method for generating a suite of test

instances for a complex query such that together they “exercise”

all parts of the query. In the field of synthetic data generation,

previous works have proposed different approaches to generating

data for testing workload queries [9, 37, 47]. Using our approach,
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name addr
Eve Edwards 32767 Magic Way

(a) Drinker relation

name brewer
American Pale Ale Sierra Nevada

(b) Beer relation
name addr

Restaurant Memory 1276 Evans Estate

Tadim 082 Julia Underpass

Restaurante Raffaele 7357 Dalton Walks

(c) Bar relation

drinker beer
Eve Edwards American Pale Ale

(d) Likes relation
bar beer price

Restaurant Memory American Pale Ale 2.25

Restaurante Raffaele American Pale Ale 2.75

Tadim American Pale Ale 3.5

(e) Serves relation

Figure 1: Database instance 𝐾0 of the Beers dataset. We as-

sume natural foreign key constraints from Serves and Likes to
Drinker, Bar, Beer.

𝑄𝐴 ={(𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1)∧

𝑑1 LIKE ’Eve␣%’ ∧ ∀𝑥2, 𝑝2 (¬Serves(𝑥2, 𝑏1, 𝑝2) ∨ 𝑝1 ≥ 𝑝2
)
}

(a) Query𝑄𝐴 : for each beer liked by any drinker whose first name is Eve, find

the bars that serve this beer at the highest price

𝑄𝐵 = {(𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
∃𝑥2, 𝑝2 (Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1)

∧ 𝑑1 LIKE ′𝐸𝑣𝑒%′ ∧ Serves(𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 > 𝑝2
)
}

(b) Query𝑄𝐵 which is similar to𝑄𝐴 but does not use the difference operator

and instead, find beers served at a non-lowest price

Figure 2: Correct query𝑄𝐴 and incorrect query𝑄𝐵 . Note that

the formula in 𝑄𝐴 has a space after ‘Eve’ whereas 𝑄𝐵 does

not. Here and later, denotes the space symbol.

𝑄𝐵 −𝑄𝐴 = {(𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
∃𝑥2, 𝑝2 (Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1) ∧ 𝑑1 LIKE ′𝐸𝑣𝑒%′

∧Serves(𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 > 𝑝2
)
∧ ∀𝑑2, 𝑝3

(
¬Likes(𝑑2, 𝑏1) ∨ ¬(𝑑2 LIKE ‘Eve␣%’)∨

¬Serves(𝑥1, 𝑏1, 𝑝3) ∨ (∃𝑥3, 𝑝4 (Serves(𝑥3, 𝑏1, 𝑝4) ∧ 𝑝3 < 𝑝4))
)
}

Figure 3: The difference query 𝑄𝐵 −𝑄𝐴 from Figure 2.

name addr
𝑑1 ∗

(a) Drinker relation

name addr
𝑥1 ∗
𝑥2 ∗
𝑥3 ∗

(b) Bar relation

bar beer price
𝑥1 𝑏1 𝑝1
𝑥2 𝑏1 𝑝2
𝑥3 𝑏1 𝑝3

(c) Serves relation

name brewer
𝑏1 ∗

(d) Beer relation
drinker beer
𝑑1 𝑏1

(e) Likes relation
𝑑1 LIKE ‘Eve%’ ∧𝑝1 > 𝑝2 ∧ 𝑝2 > 𝑝3

(f) Global condition

Figure 4: C-instance I0 that satisfies𝑄𝐵−𝑄𝐴 and generalizes

the counterexample 𝐾0 in Figure 1.

given a workload query 𝑄 , we can generate a set of instances to

provide coverage testing for all parts of 𝑄 ; furthermore, given a

set of workload queries, we can generate test instances where

a given subset of queries are satisfied but others are not. These

generated instances can be used for automated, comprehensive

testing of queries.

We illustrate the first use case above with an example below.

Example 1. Consider the database𝐾0 shown in Figure 1 containing

information about drinkers (Drinker table), beers (Beer table), bars (Bar
table), which beer does a drinker like (Likes table), and which bar

serves which beer (Serves table). Also consider the queries 𝑄𝐴 and 𝑄𝐵
written in Domain Relational Calculus (DRC) in Figures 2a and 2b,

respectively. The correct query 𝑄𝐴 returns a list of bars that serve the

most expensive beer liked by any drinker whose first name is ‘Eve’,

whereas 𝑄𝐵 is a very similar query that chooses bars serving beers

not at the lowest price and only requires first names to have a prefix

of ‘Eve’. Figure 3 shows the formula for 𝑄𝐵 − 𝑄𝐴 but is not easily

understandable and does not clearly show the difference between the

queries. In this case, Figure 1 gives the minimum counterexample 𝐾0
for the difference between 𝑄𝐴 and 𝑄𝐵 [41]. In particular, 𝑄𝐵 returns

the tuples (Restaurante Raffaele, American Pale Ale) and (Tadim,

American Pale Ale) while 𝑄𝐴 only returns the latter tuple.

Now consider the more general counterexample as a c-instance (de-

fined in the next section) showing the differences between the queries

𝑄𝐵 −𝑄𝐴 in Figure 4. This c-instance, I0, shows abstract tuples with
variables instead of constants (∗ are ‘don’t care’ variables) and a

condition that the variables must satisfy (there should be a drinker

whose name is ‘Eve’ with a space after and the order of the prices in

Serves table should be 𝑝1 > 𝑝2 > 𝑝3). Thus, I0 not only generalizes
the counterexample in Figure 1 (i.e., there exists an assignment to

the variables that results in the instance in Figure 1 and satisfies the

global condition), but, it also specifies the ‘minimal’ condition for

which𝑄𝐵 differs from𝑄𝐴 (the global condition). The ground instance

in Figure 1 contains specific values that may confuse the user and

divert attention from the core differences. This is one of the c-instances

in our universal solution that includes three c-instances. Each of the

c-instances captures a facet of the difference between 𝑄𝐵 and 𝑄𝐴 .

Our contributions. Our contributions are summarized below.

• We propose a framework for characterizing all query answers

using c-instances using the notion of coverage and a universal

solution that captures different ways a given DRC query can be

satisfied.

• We argue that deciding whether a universal solution or even any

satisfying c-instance exists is undecidable for general DRC queries,

by giving a reduction from the finite satisfiability problem for First

Order Logic formulas [50]. However, for the class of conjunctive

queries with negation 𝐶𝑄¬
, the universal solution can be found

in poly-time in the query size.

• Since the problem in general is undecidable, we give two practical

algorithms for finding a minimal set of satisfying c-instances.

The first algorithm runs an exhaustive search subject to a size

limit on the c-instances inspired by the chase procedure from

Data Exchange [21, 22]. Then, we provide a more efficient chase

algorithm that may return a smaller set of satisfying c-instances.

• We experimentally show scalability and quality of the c-instances

returned by our algorithms varying different parameters. Our

experiments use a real collection of wrong queries submitted by

students of an undergraduate database course as well as queries

over the TPC-H schema. Finally, we provide a comprehensive user

study and a case study that show the usefulness of our approach.

2 RELATEDWORK

Test data generation. QAGen [9] was among the first systems

that focused on data generation in a query-aware fashion. The

system aimed at testing the performance of a database manage-

ment system given a database schema, one parametric Conjunctive

Query, and a collection of constraints on each operator. MyBench-

mark [37] extends [9] by generating a set of database instances



that approximately satisfies the cardinality constraints from a set

of query results. HYDRA [47] uses a declarative approach that al-

lows for the generation of a database summary that can be used

for dynamically generating data for query execution. Cosette [15],

which targets checking SQL equivalence without any test instances,

encodes SQL queries to constraints using symbolic execution, and

uses a constraint solver to find one counterexample that differen-

tiates two input queries. RATest [41] proposes an instance-based

counterexample for distinguishing two queries, where the empha-

sis is on the cardinality of the generated counterexample. The

main differences between our work and [41] are that (1) we provide

abstract instances with variables and conditions to pinpoint the

source of error while comparing a wrong query against a correct

query, (2) we only use the query and the schema to generate the

counterexample and do not need a database instance to provides

a counterexample, whereas [41] requires a database instance to

output one sub-instance as the counterexample, (3) [41] provides

one grounded instance where the correct and wrong queries differ,

while we generate a set of c-instances aims to show all possible ways

two queries can differ. XData [11] generates test data by covering

different types of query errors that can commonly occur. Qex [52]

is a tool for generating input relations and parameter values for a

parameterized SQL query and aims at unit testing of SQL queries.

It also generates one instance that satisfies the query and does

not support nested queries and set operations, and thus does not

support the full class of DRC queries. Olston et. al. [44] studied the

problem of generating small example data for dataflow programs

to help users understand the behavior of their programs.

Explanations for query results using provenanceData prove-

nance has been studied from many aspects [6, 10, 13, 24–26, 28, 48].

A multitude of approaches have used provenance for query answers

explanations. One approach [46] is based on tuple interventions

in the database in the goal finding the influencing tuples over the

query answers. Another [40] quantifies the responsibility of each

input tuples to the query answer, an idea inspired by causality

[45]. Shapley values [49] have also been used in this measure the

contribution of each input tuple to the query result [36]. Natural

Language (NL) explanations have also been proposed [18] when

users employ an NLIDB such as [35]. The problem of explaining

why a certain tuple is not in the query answer, also referred to

as ‘why-not provenance’, has been studied using two approaches;

instance-based [29–31, 34] where explanations are (missing) input

tuples, and query-based [12, 19, 51] where explanations are based

on query predicates or operators. Our approach suggests a query

characterization that is independent of a specific database instance

and thus also its provenance.

Coverage in software testing Test coverage is used to measure

the percentage of a given software that is executed during the tests.

Intuitively, the higher the test coverage, the lower the likelihood

of the software containing bugs and unforeseen errors [39, 42, 53].

Different criteria for coverage have been proposed [43, 53], e.g.,

function coverage (checking the percentage of functions in the

program that are executed during testing) and branch coverage

(checking the percentage of branches, i.e., decisions that have true

and false outcomes, in the program that are executed during testing).

These ideas have certainly influenced our model.

Chase in schema mappings The chase procedure was orig-

inally suggested in the context of database dependencies [3, 38]

and later used for generating schema mappings [14, 21]. The latter

application aims to map one database schema to another, by us-

ing tuple-generating and equality-generating dependencies. These

dependencies are then used in a chase procedure to generate the

mapping between the schemas. Previous work has explored the

complexity of the chase procedure and the types of solutions it is

able to generate [20, 23, 27]. Our notion of a universal solution is

therefore inspired by the notion of universal solution in the schema

mapping problem [21]. Recent work has proposed an abstraction of

schema mappings [7], which allows reusing meta schema mappings.

In this paper, the c-instances can be thought of as “meta-instances”

that can be mapped to concrete ones (e.g., [41]) as needed.

3 MODEL FOR QUERY CHARACTERIZATION

3.1 Databases and Relational Calculus

First we review and define domains and Domain Relational Calcu-

lus which will be used for express queries in this paper. A database

schema R is a collection (𝑅1, ..., 𝑅𝑟 ) of relation schemas. Each 𝑅𝑖
is defined over a set of attributes denoted by Attr(𝑅𝑖 ). For each

attribute A ∈ Attr(𝑅𝑖 ), its domain is a set of (possibly infinite)

constants and is denoted as Dom(A), and Dom = ∪ADom(A); for

simplicity, we will frequently use Dom instead of Dom(A) with

the implicit assumption that the constants are from the right do-

main Dom(A). Two relations can share the same attribute A; we use

𝑅𝑖 .A to explicitly denote an attribute A ∈ Attr(𝑅𝑖 ). Further, two

attributes may share the same domain (e.g., when they share the

same name or are related by foreign key constraints). A ground

instance (or simply an instance when it is clear from the context)

is a (possibly empty) finite set of tuples with constant attribute

values that conform to the schema and corresponding domains. In

addition, we allow standard constraints like key constraints, foreign

key constraints, and functional dependencies in our framework.

DRC queries and tree representation. We next review the defi-

nition of Domain Relational Calculus (DRC) [33] and use it to define

queries and syntax trees. It has been shown that DRC is equivalent

to Relational Algebra [16], which provides the theoretical founda-

tion to query languages such as SQL.

Definition 1 (DRCQueries). Given a schema R, a DRC query

𝑄 has the form 𝑄 = {(𝑥1, 𝑥2, ..., 𝑥𝑝 ) | P𝑄 (𝑥1, ...𝑥𝑝 )} where P𝑄 is a

standard first order logic (FOL) formula [1] involving relation names

𝑅1, · · · , 𝑅𝑟 , constants from Dom, a set of query variables V𝑄 for

attribute values, quantifiers ∃,∀, operators ¬,=, >, ≥, <, ≤,≠, 𝐿𝐼𝐾𝐸
etc., and connectives ∧,∨. Here,V𝑜𝑢𝑡

𝑄
= {𝑥1, · · · , 𝑥𝑝 } ⊆ V𝑄 denote

output variables of the query 𝑄 , which can be an empty set for a

Boolean query. The output variables are free variables in 𝑃𝑄 ; the

remaining variables in 𝑃 are quantified under ∀ or ∃.
The formula P𝑄 is built up from DRC atoms of the following

forms: (1) 𝑅(𝑦1 ..., 𝑦𝑘 ) or ¬𝑅(𝑦1 ..., 𝑦𝑘 ), where 𝑅 ∈ R is a relation,

and each 𝑦𝑖 ∈ V𝑄 ∪ Dom is a query variable or a constant, and (2)

conditions 𝑥1 𝑜𝑝 𝑥2 or 𝑥1 𝑜𝑝 𝑐 , where 𝑥1, 𝑥2 ∈ V𝑄 , 𝑐 ∈ Dom, and 𝑜𝑝

is a binary operator.

A ground instance 𝐷 is said to satisfy a DRC query𝑄 (denoted by

𝐷 |= 𝑄) if 𝑄 (𝐷) ≠ ∅ (for a Boolean query, 𝑄 (𝐷) = {{}} or true), i.e.,



there is a satisfying assignment 𝛼 : V𝑜𝑢𝑡
𝑄

→ Dom of the output

variables of 𝑄 to the constants in 𝐷 such that 𝑃𝑄 evaluates to true.

We make a few assumptions without loss of generality: (1) in the

FOL formula P𝑄 , all negations appear in DRC atoms (which can

be achieved by repeated applications of standard equivalences like

¬(∀𝑥𝑃 (𝑥)) = ∃𝑥 (¬𝑃 (𝑥)) and De Morgan’s laws like¬(𝑎∨𝑏) = ¬𝑎∧
¬𝑏, etc.); (2) the DRC queries are safe or domain independent [1],

i.e., any variable 𝑦𝑖 that appears in a negated relation ¬𝑅(𝑦1 ..., 𝑦𝑘 )
also appear under a positive relation, e.g., queries like {𝑥 : ¬𝑅(𝑥)}
are not allowed; and (3) each quantified variable is unique in 𝑃𝑄
(which can be achieved by renaming).

Example 2. The queries𝑄𝐴 and𝑄𝐵 are shown in Figure 2, whereas

Figure 3 gives the difference query 𝑄𝐵 −𝑄𝐴 that identifies beers at

a non-lowest price but also not at the highest price. In Figure 3, the

output variables are 𝑥1, 𝑏1 and the FOL formula is specified on the

right hand side by renaming the variables in 𝑄𝐴, 𝑄𝐵 in Figure 2.

The ground instance 𝐾 in Figure 1 satisfies 𝑄𝐵 − 𝑄𝐴 in Figure 3,

since there is a satisfying assignment 𝛼 from the output variables

𝑥1, 𝑏1 in the query 𝑄𝐵 − 𝑄𝐴 , i.e., 𝛼 (𝑥1) = “Restaurant Raffaele”,

𝛼 (𝑏1) = “American Pale Ale”, such that the formula in the query

is satisfied when 𝑑1 = “Eve Edwards”, 𝑝1 = 2.75, 𝑥2 = “Restaurant

Memory”, 𝑝2 = 2.25, therefore the first part of the FOL formula from

𝑄𝐵 is true. The second part of the FOL formula with ∧ is also true

for all 𝑑2, 𝑝3: while the first two disjuncts under ¬ evaluates to false,

¬Serves(𝑥1, 𝑏1, 𝑝3) = 𝑡𝑟𝑢𝑒 for 𝑝3 = 2.25, 3.5, and for 𝑝3 = 2.75 the

fourth disjunct is satisfied with 𝑥3 = “Tadim” and 𝑝4 = 3.5.

Definition 2 (Syntax Tree ofQuery). A syntax tree of a query

𝑄 is tree for the FOL formula P𝑄 satisfying the following rules:

(1) Each leaf node is a DRC atom.

(2) Each internal node is either a quantifier with a single variable

(e.g., ∀𝑥 and ∃𝑥) with a single child, or a connective (∧ and ∨)
with two children.

Further, since in the formula P𝑄 all negations appear in the DRC

atoms, all negations in the syntax tree appear in the leaves; we do not

use separate nodes for negation.

Given a DRC query 𝑄 , we can have a unique syntax tree fol-

lowing the order of quantifiers in 𝑄 (e.g., for ∃𝑥𝑦, ∃𝑦 appears as

the child of ∃𝑥 , and a fixed order of associative connectives with

appropriate parentheses, e.g., (𝑝1∨𝑝2∨𝑝3) is always assumed to be

((𝑝1∨𝑝2)∨𝑝3). However, two equivalent DRC queries may have dif-

ferent syntax trees, e.g., {𝑥 | 𝑅(𝑥)} and {𝑥 | (𝑅(𝑥)∧𝑇 (𝑥))∨ (𝑅(𝑥)∧
¬𝑇 (𝑥))}. The syntax tree for the query 𝑄𝐵 −𝑄𝐴 from Figure 3 is

shown in Figure 5 (to save space, we put multiple quantifiers with

variables in the same node). The special treatment of the negation

operator ¬ is for the sake of convenience in our algorithms.

3.2 Conditional Instances or C-Instances

We next give the definition of a c-instance adapting the concepts

of v-tables and c-tables from the literature [32]. We distinguish be-

tween query variables whose domain is denoted byV (Definition 1),

and variables in the c-instances whose domain is denoted by L;

we refer to the latter as labeled nulls (called marked nulls in [32])

for clarity. The c-instances involve conditions using atomic condi-

tions, which are either (1) an atom of the form [𝑥 𝑜𝑝 𝑐] (¬[𝑥 𝑜𝑝 𝑐])

∧

∀𝒅2, 𝒑3

∨

∃𝒙3, 𝒑4

∧

𝑝3 < 𝑝4Serves(𝑥3, 𝑏1, 𝑝4)

∨

¬Serves(𝑥1, 𝑏1, 𝑝3)∨

¬(𝑑2 LIKE ‘Eve␣%’)¬Likes(𝑑2, 𝑏1)

∃𝒅1, 𝒑1

∧

∃𝒙2, 𝒑2

∧

𝑝1 > 𝑝2Serves(𝑥2, 𝑏1, 𝑝2)

∧

Serves(𝑥1, 𝑏1, 𝑝1)∧

𝑑1 LIKE ‘Eve%’Likes(𝑑1, 𝑏1)

Figure 5: Syntax tree of𝑄𝐵−𝑄𝐴 in Example 2. Atoms covered

by the c-instance in Figure 4 are in green dashed boxes.

name addr
𝑑1 ∗

(a) Drinker relation

name addr
𝑥1 ∗
𝑥2 ∗

(b) Bar relation

bar beer price
𝑥1 𝑏1 𝑝1
𝑥2 𝑏1 𝑝2

(c) Serves relation

name brewer
𝑏1 ∗

(d) Beer relation
drinker beer
𝑑1 𝑏1

(e) Likes relation
𝑑1 LIKE ‘Eve%’ ∧¬(𝑑1 LIKE ‘Eve␣%’) ∧𝑝1 > 𝑝2

(f) Global condition

Figure 6: C-instance I1 that satisfies 𝑄𝐵 −𝑄𝐴.
or [𝑥 𝑜𝑝 𝑦](¬[𝑥 𝑜𝑝 𝑦]) where 𝑥 and 𝑦 are labeled nulls in L, 𝑐 is a

constant in Dom(𝑥), and 𝑜𝑝 ∈ {<, >, ≤, ≥,=,≠, 𝐿𝐼𝐾𝐸, ...} is a binary

operator, or (2) a condition of the form ¬𝑅(𝑥1, . . . , 𝑥𝑘 ) where 𝑅 is a

relation on 𝑘 attributes.

Definition 3 (Conditional Instance or c-instance). A v-

table with a relational schema 𝑅𝑖 ∈ R is a table T𝑖 in which for each

tuple 𝑡 ∈ 𝑇𝑖 and each attribute A ∈ Attr(𝑅𝑖 ), 𝑡 [A] is either a constant
from Dom(A) or is a labeled null from L.

A c-instance I of R is a tuple of the form ({T1, . . . , T𝑟 }, 𝜙), where
for each 𝑖 ∈ [1, 𝑟 ], T𝑖 is a v-table with schema 𝑅𝑖 , and 𝜙 is a con-

junction of atomic conditions, which is associated with the c-instance,

denoted as the global condition.

Our definition of c-instances is slightly different from those

found in previous literature [32], as we only associate the instance

with a global condition, while there are no local conditions asso-

ciated with a single tuple or even a single table in the instance.

Table-level conditions might still appear in the global condition as

a conjunct that contains labeled nulls from a single table, e.g. in

Figure 4, the condition 𝑝1 > 𝑝2 is only relevant to the 𝑆𝑒𝑟𝑣𝑒𝑠 table.

A conditional table (c-table) is a special case of a c-instance when

there is only one relation in the instance, hence we only discuss c-

instances in the rest of this paper. Note that we also allow for labeled

nulls that do not affect the evaluation of 𝜙 , and are not needed for

joins between tables. These are called “don’t care” labeled nulls and

are denoted by ∗ for simplicity instead of having unique names.

Example 3. Consider the c-instance I0 shown in Figure 4. The

single tuple in the drinker table says that the name of the drinker is

𝑑1, its address is a “don’t care” token, and the condition says that the

name 𝑑1 must start with “Eve”. The condition also enforces an order

on the prices. 𝑏1 cannot be replaced with ∗ because all three beers in
Serves must be the same.

C-instances define a set of possible worlds, each defined by a

mapping (see below) to the labeled nulls in the c-instance.

Definition 4 (Mapping for C-instances). Given a c-instance

I = (T1, . . . , T𝑟 , 𝜙) over a schema R, a mapping 𝜇 : L → Dom

maps the labeled nulls L in I to their respective domains.



name addr
𝑑1 ∗
𝑑2 ∗

(a) Drinker relation

name addr
𝑥1 ∗
𝑥2 ∗
𝑥3 ∗

(b) Bar relation

bar beer price
𝑥1 𝑏1 𝑝1
𝑥2 𝑏1 𝑝2
𝑥3 𝑏1 𝑝3

(c) Serves relation

name brewer
𝑏1 ∗

(d) Beer relation
drinker beer
𝑑1 𝑏1

(e) Likes relation

𝑑1 LIKE ‘Eve%’ ∧ 𝑑1 LIKE ‘Eve␣%’ ∧¬Likes(𝑑2, 𝑏1) ∧
¬ (𝑑2 LIKE ‘Eve␣%’) ∧𝑝1 > 𝑝2 ∧ 𝑝2 > 𝑝3

(f) Global condition

Figure 7: C-instance I2 that satisfies 𝑄𝐵 − 𝑄𝐴. It is not min-

imal since one of the Serves tuples can be removed without

changing the coverage.

Extending 𝜇 to the c-instance I, we denote 𝜇 (I) as the ground

instance 𝜇 (I) = {𝜇 (𝑥) : 𝑥 is a labeled null in T𝑖 , for 𝑖 ∈ [1, 𝑟 ]}.
Let L′ ⊆ L be the labeled nulls appearing in 𝜙 of I. Then, 𝜙𝜇 =

𝜙 (𝜇 (L′)) yields the evaluation of 𝜙 (True or False) with the map-

pings given by 𝜇.

Definition 5 (Possible Worlds and Consistency for C-in-

stances). Given a c-instance I = (T1, . . . , T𝑟 , 𝜙) of schema R, the
set of possible worlds for I is

𝑃𝑊𝐷 (I) = {𝜇 (I) : 𝜇 is a mapping ∧ 𝜙𝜇 = 𝑇𝑟𝑢𝑒}.
A c-instance I is said to be consistent, denoted by IsConsistent(I)
if 𝑃𝑊𝐷 (I) ≠ ∅.

Note that ground instances in 𝑃𝑊𝐷 (I) cannot contain extra

tuples that are not in the c-instance I. They may, however, have

fewer tuples than the c-instance mapped to them because we con-

sider set semantics, where a mapping may map two tuples with

labeled nulls to the same tuple with constant values.

Example 4. One possible world of the c-instance in Figure 4 is the

ground instance in Figure 1. In this ground instance, all labeled nulls

have a mapping such that the global condition is satisfied.

3.3 Query Characterization by C-Instances

We next give definitions for our framework of query characteri-

zation through c-instances. The intuition is that the c-instances

should be sound, i.e., they should correctly capture a query, as well

as “complete” in terms of different ways a query can be satisfied

by ground instances, which requires more careful considerations

using “coverage” of ground and c-instances as we discuss below.

Definition 6. [Satisfying c-instances] Given a query 𝑄 , a c-

instance I is said to satisfy 𝑄 (denoted I |= 𝑄) if I is consistent

(Definition 5) and for every ground instance 𝐷 in 𝑃𝑊𝐷 (I), 𝐷 |= 𝑄 .

Example 5. Consider the query 𝑄𝐵 −𝑄𝐴 in Figure 3, and the c-

instance I0 shown in Figure 4. I0 |= 𝑄𝐵 −𝑄𝐴 since every mapping of

constants from the domain of its labeled nulls that satisfies the global

condition will generate a ground instance 𝐷 such that 𝐷 |= 𝑄𝐵 −𝑄𝐴 ;
𝐷 = 𝐾0 in Figure 1 is an example.

Coverage. Given a DRC query, the Coverage of a (ground or c-)

instance captures different parts of a DRC query, that are satisfied

by the instance, and helps us define the completeness of a set of

c-instances. An inductive definition of coverage is given below.

Definition 7. [Coverage of ground instances] Given a DRC query

syntax tree𝑄 , a ground instance 𝐾 such that 𝐾 |= 𝑄 , and a satisfying
assignment 𝛼 : V𝑜𝑢𝑡

𝑄
→ Dom of the output variables of 𝑄 , the

coverage cov(𝑄,𝐾, 𝛼) of𝑄 by 𝐾 under 𝛼 identifies a subset of the

DRC atoms (leaves) of the query syntax tree recursively top-down by

extending 𝛼 to all free variables in a subtree as follows:

(1) If 𝑄 consists of a single DRC atom (here all variables in 𝑄 are

free), then cov(𝑄,𝐾, 𝛼) contains the DRC atom of 𝑄 if:

(a) 𝑄 = 𝑅(𝑥1, ..., 𝑥𝑘 ) and 𝑅(𝛼 (𝑥1), ..., 𝛼 (𝑥𝑘 )) appears in 𝐾 , or
(b) 𝑄 = ¬𝑅(𝑥1, ..., 𝑥𝑘 ) and 𝑅(𝛼 (𝑥1), ..., 𝛼 (𝑥𝑘 )) is not in 𝐾 , or
(c) 𝑄 = 𝑥 𝑜𝑝 𝑦 and 𝛼 (𝑥) 𝑜𝑝 𝛼 (𝑦) evaluates to True;
otherwise cov(𝑄,𝐾, 𝛼) = ∅.

(2) If𝑄 = 𝑄1∧𝑄2 or 𝑄 = 𝑄1∨𝑄2 (here the sets of free variables in

𝑄,𝑄1, 𝑄2 are the same), then cov(𝑄,𝐾, 𝛼) = cov(𝑄1, 𝐾, 𝛼) ∪
cov(𝑄2, 𝐾, 𝛼).

(3) If𝑄 = ∃𝑥𝑄 ′(𝑥) or 𝑄 = ∀𝑥𝑄 ′(𝑥) (here 𝑥 is a new free variable

in 𝑄 ′
), then

cov(𝑄,𝐾, 𝛼) =∪𝑐∈Dom𝐾 cov(𝑄 ′, 𝐾, 𝛼∪{𝑥 → 𝑐}), whereDom𝐾
denotes the constants appearing in 𝐾 .

The coverage of𝐾 for𝑄 is defined as cov(𝑄,𝐾) =
⋃
𝛼 cov(𝑄,𝐾, 𝛼).

Intuitively, the coverage cov(𝑄,𝐾) is the set of atoms and condi-

tions of 𝑄 that can be covered by a ground instance 𝐾 , eventually

leading to a satisfying assignment of the output variables of 𝑄 .

Therefore, we use union to combine the coverages in Definition 7

for all cases, since we are interested in all possible ways to satisfy

a query. Since 𝛼 is a satisfying assignment of the output variables,

the coverages of 𝑄 ′
in case (3) in Definition 7 for both ∃,∀, and for

both 𝑄1, 𝑄2 for a ∧ node and for at least one of them for a ∨ node

in case (2) above is non-empty. For universal quantifiers, it is worth

noting that when the quantified variable takes different constants,

different branches of the inner query (𝑄 ′
) may be satisfied, and thus

provide different coverages, and to take all of them into account,

we again employ union.

Example 6. The only satisfying assignment to the difference query

𝑄𝐵 − 𝑄𝐴 depicted in Figure 3 w.r.t. the ground instance shown in

Figure 1 is given by the assignment 𝛼 (𝑥1) = “Restaurant Raffaele”,

𝛼 (𝑏1) = ”American Pale Ale” described in Example 2. By applying

the recursive top-down process implied by Definition 7, the DRC atoms

of the query covered by this assignment are the leaves colored in green

in Figure 5. Note that different assignments of a ∀ variable can cover

different leaves, e.g., for ∀𝑝3 node in the right subtree, 𝑝3 = 2.25, 3.5

covers the node ¬Serves(𝑥1, 𝑏1, 𝑝3) atom whereas 𝑝3 = 2.75 covers

Serves(𝑥3, 𝑏1, 𝑝4) and 𝑝3 < 𝑝4 atoms as discussed in Example 2.

Definition 8. [Coverage of satisfying c-instances] Given a DRC

query𝑄 and a c-instance I such that I |= 𝑄 , the coverage of I for

𝑄 is defined as cov(𝑄,I) = ⋂
𝐾 ∈𝑃𝑊𝐷 (I) cov(𝑄,𝐾).

Since 𝑃𝑊𝐷 (I) can contain ground instances with different cov-

erages, the coverage of I is defined as the common coverage of all

possible worlds. Therefore, the coverage of a c-instance I is always

a (not necessarily strict) subset of any ground instance in 𝑃𝑊𝐷 (I).

Example 7. Reconsider the syntax tree of the query 𝑄𝐵 − 𝑄𝐴
shown in Figure 5. Every ground instance in 𝑃𝑊𝐷 (I0) (I0 is depicted
in Figure 4) has to have exactly three Serves tuples due to the global
conditions (recall that the mapping from a c-instance to each ground

instance in 𝑃𝑊𝐷 has to be onto). Thus, the coverage of the c-instance

I0 depicted in Figure 4 is exactly the coverage of the ground instance

in Figure 1/Example 6 and highlighted in green with dashed frames



in the tree shown in Figure 5. The c-instance I2 in Figure 7 covers all

DRC atoms in the query 𝑄𝐵 −𝑄𝐴 . To see this, note that there are two
drinker variables 𝑑1, 𝑑2 in I2 such that ¬Likes(𝑑2, 𝑏1) as well as ¬(𝑑2
LIKE ‘Eve %’) hold in all ground instances in 𝑃𝑊𝐷 (I2). Therefore, for
the above satisfying assignments of output variables, when the ∀𝑑2 in
the right subtree iterates over the constants corresponding to 𝑑2, the

two remaining uncovered leaves are covered as well.

Minimality of a c-instance. We now define minimality w.r.t. the

coverage of a c-instance. In the next definition, we denote by |I |
the size of a c-instance |I |, defined as the total number of tuples

and atomic conditions of I. For instance, |I0 | = 12 in Figure 4 (9

tuples and 3 atomic conditions).

Definition 9 (Minimal satisfying c-instance). Given a DRC

query 𝑄 , a c-instance I with coverage C satisfying 𝑄 is minimal if

for every other satisfying c-instance I ′
that has coverage C, it holds

that |I | ≤ |I ′ |.

Example 8. Following Example 7, the c-instance I0 in Figure 4 is

a minimal satisfying c-instance assuming natural foreign key con-

straints from Serves, Likes to Drinker, Beer, Bar, since any other c-instance

with the same coverage has a larger size. In particular, I1 of smaller

size (=10) in Figure 6 does not have the same coverage, since in the ∀
nodes of right subtree when𝑑2 (in query) =𝑑1 (in I1) and 𝑝3 (in query)
= 𝑝1 (in I1), the two rightmost leaves Serves(𝑥3, 𝑏1, 𝑝4) and 𝑝3 < 𝑝4
are not covered by any ground instance in 𝑃𝑊𝐷 (I1).

Minimality ensures that we do not include redundant tuples or

conditions in our c-instances. While we adopt the above simple

notion of minimality, it is ensured by a post-processing step in our

algorithms, so any other reasonable form of minimality can also be

used in this framework.

Universal solution. Our framework for finding solutions for a

query 𝑄 is given in terms of a set of minimal c-instances I |= 𝑄 ,

which immediately ensures soundness of our solutions, since any

output c-instance is guaranteed to satisfy the query. Conversely,

the notion of completeness is more challenging since there can

be satisfying ground instances of unbounded size with redundant

tuples that do not affect the query answer. The notion of coverage

helps us define a notion of completeness using a universal solution,

which ensures that for all satisfying ground instances of a certain

coverage, a c-instance with the same coverage is included.

Definition 10 (Minimal c-Solution and Universal Solu-

tion). Let 𝑄 be a DRC query over a schema R and domain Dom.

A minimal c-solution of 𝑄 is a set of minimal c-instances of 𝑄 ,

SI = {I1, . . . ,I𝑘 }, such that for all I𝑖 , I𝑖 |= 𝑄 , and for any two I𝑖 ,I𝑗
where 𝑖 ≠ 𝑗 , cov(𝑄,I𝑖 ) ≠ cov(𝑄,I𝑗 ).

Auniversal solution of𝑄 is aminimal c-solutionSI = {I1, . . . ,I𝑘 }
such that (1) if there exists a ground instance 𝐾 , where 𝐾 |= 𝑄 , with
coverage C, there is a c-instance I𝑖 ∈ SI with coverage C = C𝑖 , (2) if
we remove any c-instance from SI , condition (1) does not hold.

Note that for the universal solution, we do not require that

𝐾 ∈ 𝑃𝑊𝐷 (I𝑖 ) since 𝐾 may contain more tuples than I𝑖 and thus

may not be part of the set 𝑃𝑊𝐷 (I𝑖 ).

Example 9. Reconsider the 𝑄𝐵 −𝑄𝐴 shown in Figure 3. The set

{I0,I1} is a minimal c-solution for𝑄𝐵 −𝑄𝐴 since they have different

coverages and both satisfy 𝑄𝐵 −𝑄𝐴 . Two of the three c-instances in
the universal solution are I0, I1 shown in Figures 4, 6, 7, respectively

(the rest are shown in Section 5.2 in the case study).

3.4 Computability of the Universal Solution

Proposition 3.1. The computability and complexity of finding a

universal solution is as follows:

(1) Finding a universal solution is poly-time in the size of the query

for 𝐶𝑄¬
(and therefore also for 𝐶𝑄s), where 𝐶𝑄¬

is the class

of conjunctive queries with negation that includes operators ∃,
∧, ¬ for individual atoms and conditions.

(2) Checking whether a universal solution exists (or even any min-

imal c-solution exist) is undecidable for general DRC queries

that may include the operators ∀, ∃, ∨, ∧, and ¬.

Proof. (1) The universal solution of 𝑞 ∈ 𝐶𝑄¬
is a single c-

instance comprising all relational atoms 𝑅(𝑥1, · · · , 𝑥𝑘 ) of the query,

and a global condition that is the conjunction of all comparisons

(𝑥 𝑜𝑝 𝑦, 𝑥 𝑜𝑝 𝑐 with or without negation) and negated relational

atoms ¬𝑅(𝑥1, · · · , 𝑥𝑘 ) in the query. This implies a poly-time com-

plexity in the size of the query.

(2) Finding whether a universal solution exists is an undecidable

problem for general DRC queries due to a reduction from the finite

satisfiability problem in first order logic (FOL) that is known to be

undecidable by the Trakhtenbrot’s Theorem [50]. An FOL sentence

𝜙 is finitely satisfiable if there exists a finite ground instance 𝐾 such

that 𝜙 is true over 𝐾 , which is true if and only if there is a satisfying

c-instance I. Hence the universal solution for 𝑄 is non-empty if

and only if the global condition 𝜙𝑄 is finitely satisfiable, which is

undecidable when 𝑄 is a general DRC query. □

Note that the inclusion of ∀ operators and arbitrary position-

ing of ¬ make general DRCs harder than 𝐶𝑄¬
. In 𝐶𝑄¬

, negations

are only allowed in front of relational atoms and conditions sub-

ject to standard ‘safety’ constraints [2]. The query that returns all

beers that are not liked by some drinker: {(𝑏) | ∃𝑥, 𝑑, 𝑎 (Beer(𝑏, 𝑥) ∧
Drinker(𝑑, 𝑎) ∧ ¬Likes(𝑑, 𝑏))} in the DRC form, and in the equivalent

(safe) Datalog with negation form: 𝑄 (𝑏) : − Beer(𝑏, 𝑥), ¬Likes(𝑑,𝑏),
Drinker(𝑑, 𝑎), is an example of 𝐶𝑄¬

.

Since the problem of finding a universal solution for general

DRC queries is undecidable, in Section 4 we give an algorithm that

builds an exhaustive minimal c-solution up to a certain limit on the

size of the c-instances to ensure halting by checking all possible

assignments of variables. Further, we give a more efficient algorithm

in Section 4.3 that relaxes the requirement of generating all possible

c-instances by providing a subset of satisfying c-instances.

4 ALGORITHM FOR MINIMAL C-SOLUTION

In this section we show how to compute an exhaustive set of satis-

fying c-instances up to a size limit for a DRC query 𝑄 by adapting

ideas from the chase procedure [21, 22].

4.1 Basic Notions and Overview

Given a query syntax tree𝑄 (Definition 2), our algorithm constructs

an exhaustive set of c-instances in the minimal c-solution by recur-

sively extending each c-instance in multiple ways. To explore the

different options of extending each c-instance, our algorithm takes



a similar approach to that of the chase procedure, that was origi-

nally proposed for database dependencies [3, 38]. It constructs the

different options for c-instances using a breadth first search (BFS)

procedure, thereby implicitly generating a chase tree [8]. However,

unlike the classic chase algorithm that directly adds or modifies

tuples, our procedure converts the syntax tree into a conjunction

of atoms and then maps the atoms in the conjunction to tuples

and conditions which are added to the c-instance. Each quantifier

and connector in the tree triggers a tailored recursive call. While

creating the c-instances, the algorithm keeps track of the mappings

between the query variables and the labeled nulls in the c-instances.

We next formally define this homomorphism between query and

c-instance; since we build the homomorphism in steps, we define it

as a partial function.

Definition 11 (Homomorphism between qery and c-in-

stance). Given a query 𝑄 and a c-instance I on the same schema

and domain Dom, with query variables V𝑄 and labeled nulls LI ,
and constants C𝑄 , CI ⊆ Dom respectively, a homomorphism ℎ

from 𝑄 to I is a partial function ℎ : V𝑄 ∪ C𝑄 → LI ∪ CI
such that, (1) for each constant 𝑐 ∈ C𝑄 , ℎ(𝑐) = 𝑐 , and (2) for an

atom 𝑎 = 𝑅(𝑥1, ..., 𝑥𝑘 ) in 𝑄 , if all of ℎ(𝑥1), · · · , ℎ(𝑥𝑘 ) are defined,
ℎ(𝑎) = 𝑅(ℎ(𝑥1), ..., ℎ(𝑥𝑘 )) is in relation 𝑅 in I.

As opposed to assignments from queries to ground instances, ho-

momorphisms to c-instances are not restricted to output variables

but can also map quantified variables to labeled nulls. This allows

the algorithms to consider multiple different homomorphisms of

variables to different labeled nulls. For universally quantified vari-

ables ∀𝑥 , the algorithm keeps track of multiple homomorphisms

even within the same c-instance.

We also abuse terminology as follows. Given a query 𝑄 and a

c-instance I such that there is a homomorphism ℎ from 𝑄 to I,

we refer to the domain of a query variable in 𝑄 as the set of

labeled nulls with the same domain in I according to ℎ, i.e., the

labeled nulls in the same attribute or in corresponding attributes

in different tables that share the same domain (e.g., by foreign key

dependencies).

The procedure starts by mapping the free variables of the query

to fresh labeled nulls in the c-instance. Then, it performs a BFS

where for each c-instance in the queue, it expands the homomor-

phism and the c-instance using a recursive procedure. For a syntax

tree with no quantifiers, the recursive procedure adds its atoms as

tuples to the c-instance, ensuring that the variables in the atoms are

converted to their labeled null counterparts according to the homo-

morphism. Otherwise, it handles the syntax tree based on its root:

each quantifier (∀, ∃) or connective (∧, ∨) is handled separately.

To ensure the minimality of each c-instance in the obtained set

and the minimality of the set itself (Definitions 9 and 10), we use

a post-processing procedure that checks the coverage of each c-

instance, and for any coverage, it keeps a single c-instance with

minimum size (breaking ties arbitrarily).

4.2 Exhaustive Chase for C-Instances

Algorithm 1 and Algorithm 2 form the main body of our ‘chase’ pro-

cedure. The procedure starts by calling Algorithm 1 (Tree-Chase-BFS)

on the schema R, the entire query 𝑄 , an empty instance I0, and

an empty mapping ℎ0. In addition, the size bound limit sets the

Algorithm 1 Tree-Chase-BFS

Tree-Chase-BFS(R,𝑄,ℎ0, I0, 𝑙𝑖𝑚𝑖𝑡 )
Input: R: the database schema;𝑄 : a DRC query;

I0 : a c-instance of schema of R; ℎ0 : a mapping;

𝑙𝑖𝑚𝑖𝑡 : the maximum number of tuples and conditions in the c-instance;

Output: A list of satisfying c-instances for𝑄 .

1 res = [], queue = an empty queue

2 for 𝑥 ∈ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟 (𝑄)
3 Create a fresh variable 𝑥 ′ in the domain of 𝑥

4 I0 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑥) = I0 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑥) ∪ {𝑥 ′ }
5 ℎ0 = ℎ0 ∪ {𝑥 → 𝑥 ′ }
6 queue.push(I0)

7 visited = ∅
8 while ¬ queue.isEmpty()

9 𝐼 = queue.pop()

10 if I ∈ visited or |𝐼 | > 𝑙𝑖𝑚𝑖𝑡
11 continue

12 visited = visited ∪{𝐼 }
13 if Tree-SAT(𝑄, 𝐼, ∅) and IsConsistent(𝐼 )
14 𝑟𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼 )
15 continue

16 𝐼𝑙𝑖𝑠𝑡 = Tree-Chase(R,𝑄, 𝐼 , ℎ0, 𝑙𝑖𝑚𝑖𝑡 )
17 for 𝐽 ∈ 𝐼𝑙𝑖𝑠𝑡
18 if IsConsistent( 𝐽 ) and | 𝐽 | ≤ 𝑙𝑖𝑚𝑖𝑡 and 𝐽 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑

19 queue.push(𝐽 )

20 return 𝑟𝑒𝑠

maximum number of tuples and atomic conditions in the global

condition allowed in the c-instance, and is meant to ensure halting

of the algorithm since finding a satisfying c-instance for a general

DRC query is undecidable (Proposition 3.1).

Breadth-first search. First, to initialize the instance I0 and the

mapping ℎ0 from free variables in the query to labeled nulls and

constants in I0, for each free variable 𝑥 in𝑄 , Algorithm 1 will create

a new labeled null and add it to the domain of 𝑥 in I0 and update

ℎ0 (Line 2-5). Then, the algorithm runs in a Breadth-first search

manner: I0 is initially added to the empty queue; every time the

algorithm takes the c-instance from the head of the queue, checks

whether the instance has already been generated and its size does

not exceeds 𝑙𝑖𝑚𝑖𝑡 (Line 10). The procedure for checking 𝐼 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
takes into account renaming of variables; it first compares certain

properties of the c-instances (e.g., number of tuples, size of condi-

tions etc.) and filters out candidates that cannot be equivalent to 𝐼 ,

and then it checks all possible mappings to previously generated

c-instances. It also checks (Line 13) (1) whether 𝐼 |= 𝑄 by the Tree-

SAT procedure, and (2) whether it is consistent, i.e., 𝑃𝑊𝐷 (𝐼 ) ≠ ∅,

(we use an SMT solver in our implementation). It then runs the

recursive procedure on the current c-instance (Line 16) and adds

each one of the resulting c-instances to the queue (Lines 17–19).

Recursive generation of c-instances. The recursive procedure

Algorithm 2 (Tree-Chase) handles the query according to its root

operator. It gets as input the schema of the relational database R,

the syntax tree of a DRC query 𝑄 , the current c-instance 𝐼 , and the

current homomorphism from 𝑄 to 𝐼 . For the case where the query

has no quantifiers (Line 2-7), the algorithm converts the syntax tree

into a list of conjunction of atoms/atomic conditions, and then an

instance is created for each conjunction under the homomorphism

ℎ by Add-to-Ins. The algorithm proceeds according to the root of

the syntax tree (∧,∨, ∃,∀) by calling procedures that get the same

input as Algorithm 2, call Algorithm 1 recursively, and output a list

of c-instances that are sent back to Algorithm 1.



Algorithm 2 Tree-Chase

Tree-Chase(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
Input: R: the database schema;𝑄 : the query as its syntax tree;

𝐼 : current c-instance; ℎ: current homomorphism from𝑄 to 𝐼 ;

𝑙𝑖𝑚𝑖𝑡 .

Output: a list of c-instances

1 res = []
2 if there are no quantifiers in𝑄

3 𝐿 = tree-to-conj(𝑄)
4 for𝜓 ∈ 𝐿
5 𝐽 = Add-to-Ins(R, 𝐼 , ℎ (𝜓 ))
6 if IsConsistent( 𝐽 )
7 res.append(𝐽 )

8 elseif Q.root.operator ∈ {∧}
9 res = Handle-Conjunction(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )

10 elseif Q.root.operator ∈ {∨}
11 res = Handle-Disjunction(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
12 elseif Q.root.operator ∈ {∃}
13 res = Handle-Existential(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
14 elseif Q.root.operator ∈ {∀}
15 res = Handle-Universal(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
16 return res

Algorithm 3 Handle-Conjunction

Handle-Conjunction(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
1 res = []
2 lres = Tree-Chase-BFS(R,𝑄.𝑟𝑜𝑜𝑡 .𝑙𝑐ℎ𝑖𝑙𝑑, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
3 for 𝐽 ∈ 𝑙𝑟𝑒𝑠
4 if IsConsistent( 𝐽 ) = 𝑓 𝑎𝑙𝑠𝑒
5 Continue

6 rres = Tree-Chase-BFS(R,𝑄.𝑟𝑜𝑜𝑡 .𝑟𝑐ℎ𝑖𝑙𝑑, 𝐽 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
7 for 𝐾 ∈ 𝑟𝑟𝑒𝑠
8 if IsConsistent(𝐾)
9 res.append(𝐾 )

10 return 𝑟𝑒𝑠

Handling conjunction (∧). The Handle-Conjunction proce-

dure recursively calls Algorithm 1 on both children of the root, and

every pair of solutions to each child is merged into one instance

by taking a union of every solution to the left subtree with every

solution to the right subtree, and adding the consistent instances

to the list of c-instances.

Handling disjunction (∨). The Handle-Disjunction procedure

(Algorithm 4) reduces the disjunctive tree into three conjunctive

trees by replacing 𝑄 = 𝑄1 ∨ 𝑄2 with 𝑄1 ∧ 𝑄2, 𝑄1 ∧ ¬𝑄2, and

¬𝑄1 ∧ 𝑄2, since one of the three formulae is True iff 𝑄1 ∨ 𝑄2 is

True. This conversion introduces negation to some subtrees, such a

negated subtree is translated into a syntax tree with negation only

on the leaves. Then, Algorithm 1 is called with each of the modified

trees, and each set of c-instances obtained from the three cases is

added to the result set.

Handling existential (∃) and universal (∀) quantifiers. If the

root node has ∃𝑥 , Algorithm 2 calls Handle-Existential (Algo-

rithm 5) that iterates over all labeled nulls or constants in the

domain of 𝑥 , also adds a fresh labeled null, updates the homomor-

phism (as the quantified variable becomes free in the subtree), and

recursively calls Algorithm 1. Handle-Universal (Algorithm 6)

handles the case when the root has ∀𝑥 . The difference with ∃ is that,

like the ∧ case, the solutions to all labeled nulls and constants that

𝑥 is mapped to are merged into one instance. The algorithm first

checks whether there is no root and returns the inputted c-instance

in that case (Lines 2–3) adds each mapping from 𝑥 to a labeled null

or constant to the homomorphism, runs the recursive procedure

to find all c-instances with this mapping and merges it with other

c-instances generated with other homomorphism that map 𝑥 to

other labeled nulls or constants (Lines 5–14). It further generates

c-instances by mapping 𝑥 to a fresh labeled null (Lines 19–24).

Ensuring minimality in post-processing. After Algorithm 1 re-

turns a set of c-instances, we remove the c-instances that are not

minimal in the following manner. For each c-instance in the set, we

compute a hash string for its coverage (we keep track of the cover-

age of each c-instance as it is created). Then, for each c-instance

in the set, we get all other c-instances in the set with the same

string representing its coverage and remove all but the minimal

one according to their size. Note that the hash function is applied to

the coverage of the c-instance rather than the c-instances themselves,

i.e., the function hashes the covered atoms of the query. Thus, it

allows us to efficiently detect c-instances with the same coverage

and remove those that are not minimal in terms of their number of

tuples and atomic conditions (ref. Section 3.3).

Soundness, termination, and complexity. Given a syntax tree

𝑄 of a DRC query, Algorithm 1 when given (R, 𝑄, ∅, ∅) will output

a list of c-instances that are consistent, minimal, and satisfy the

query denoted by 𝑄 (validated in Line 13), i.e., our procedure is

sound and generates a valid minimal c-solution.

Although the problem of verifying if a satisfying c-instance

exists is undecidable (Proposition 3.1), Algorithm 1 is guaranteed

to terminate given the 𝑙𝑖𝑚𝑖𝑡 parameter. There are finitely many

distinct c-instances (that are not isomorphic in terms of renaming

of variables) up to size 𝑙𝑖𝑚𝑖𝑡 given a query. If the size of a c-instance

increases over 𝑙𝑖𝑚𝑖𝑡 , the algorithm will ignore this c-instance and

not push it into 𝑞𝑢𝑒𝑢𝑒 (Lines 10-11). The algorithm will also not

get into an infinite loop because of the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 set. Every generated

c-instance is placed into this set and c-instance already found is

the set are ignored (including renaming of variables) and are not

pushed into 𝑞𝑢𝑒𝑢𝑒 (Lines 18–19). Since the size of the schema is

constant, given a limit on size of the c-instances, the domains of all

labeled nulls in the c-instances are also finite since the domain is

derived from existing labeled nulls in the c-instance.

The running time of the algorithm is exponential in the number

of operators and size of the c-instances (bounded by 𝑙𝑖𝑚𝑖𝑡 × no. of

relations × max no. of attributes) since the algorithm performs an

exhaustive search on c-instances subject to the size limit, resulting

in a high complexity. This motivates us to design a more efficient

algorithm by generating a possibly smaller minimal c-solution that

we describe in the next subsection.

4.3 Optimization by Conjunctive Tree Chase

The optimized approach converts the original syntax tree into a set

of syntax trees where each tree does not contain disjunctions (∨),

then performs the chase procedure described in Algorithm 1 on

each one of the trees. This speeds up the solution dramatically since

there is no need to expand every disjunctive operator in the tree

into a set of trees that do not contain disjunction, thus simplifying

the process of generating c-instances.

Conversion of a tree with ∨ into conjunctive trees. For sets,

𝑄1 ∨𝑄2 is equivalent to three sets {𝑄1 ∧𝑄2,¬𝑄1 ∧𝑄2, 𝑄1 ∧ ¬𝑄2}.

However, this is not always true for FOL formulae, since 𝑓1 =



∀𝑥 (𝑃 (𝑥) ∨ 𝑄 (𝑥)) is not equivalent to 𝑓2 = (∀𝑥𝑃 (𝑥) ∧ 𝑄 (𝑥)) ∨
(∀𝑥¬𝑃 (𝑥) ∧𝑄 (𝑥)) ∨ (∀𝑥𝑃 (𝑥) ∧ ¬𝑄 (𝑥)) and only 𝑓2 ⇒ 𝑓1 holds;

we demonstrate this below, first with a toy example and then using

our running example.

Example 10 (Toy example). Consider 𝑓 = ∀𝑥 (𝑒𝑣𝑒𝑛(𝑥)∨𝑜𝑑𝑑 (𝑥))
where the predicate 𝑒𝑣𝑒𝑛(𝑥) (𝑜𝑑𝑑 (𝑥)) is true if 𝑥 is even (odd). Sup-

pose the domain of 𝑥 is {3, 4}. 𝑓 is clearly satisfied with this do-

main. Now consider the conversion of 𝑓 into three conjunctions: 𝑓1 =

∀𝑥 (𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑜𝑑𝑑 (𝑥)), 𝑓2 = ∀𝑥 (¬𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑜𝑑𝑑 (𝑥)), and 𝑓3 =

∀𝑥 (𝑒𝑣𝑒𝑛(𝑥) ∧ ¬𝑜𝑑𝑑 (𝑥)). 𝑓1 is not satisfied since neither 3 nor 4 are
both even and odd, 𝑓2 is not satisfied since 4 is even, and 𝑓2 is not

satisfied since 3 is odd, thereby losing completeness in the conversion.

Example 11. Consider the syntax tree of𝑄𝐵 −𝑄𝐴 in Figure 5, and

a sub-formula of its right subtree:

∀𝑝3
(
¬Serves(𝑥1, 𝑏1, 𝑝3) ∨ ∃𝑥3, 𝑝4 (Serves(𝑥3, 𝑏1, 𝑝4) ∧ 𝑝3 < 𝑝4)

)
We can convert this into the following three formulae:

{∀𝑝3
(
¬Serves(𝑥1, 𝑏1, 𝑝3) ∧ ∃𝑥3, 𝑝4 (Serves(𝑥3, 𝑏1, 𝑝4) ∧ 𝑝3 < 𝑝4)

)
,

∀𝑝3
(
¬Serves(𝑥1, 𝑏1, 𝑝3) ∧ ∀𝑥3, 𝑝4 (¬Serves(𝑥3, 𝑏1, 𝑝4) ∨ 𝑝3 ≥ 𝑝4)

)
,

∀𝑝3
(
Serves(𝑥1, 𝑏1, 𝑝3) ∧ ∃𝑥3, 𝑝4 (Serves(𝑥3, 𝑏1, 𝑝4) ∧ 𝑝3 < 𝑝4)

)
}.

These three formulae are equivalent to the original one if there

is only one variable that 𝑝3 can be mapped to in the price domain

(in this case the original formula would be unsatisfiable). However,

when there are more than two variables or constants in the domain,

this conversion is not equivalence-preserving and will miss satisfying

c-instances. For example, the c-instance I0 in Figure 4 satisfies the

original formula but does not satisfy any of the three conjunctive

formulae - assigning 𝑝1 from I0 to the universally quantified 𝑝3 will

not satisfy any of the formulae.

Bearing this in mind, we describe an algorithm that performs

this conversion. Given a syntax tree 𝑄 , the algorithm converts it

into a set of conjunctive syntax trees based on the above principal.

We start with a syntax tree 𝑄 that may contain the ∨ operator

in different nodes. The algorithm recurses on the tree where the

base case is a 𝑄 that contains a single atom, then the algorithm

simply creates a conjunctive tree from this atom, or its negation if

it is negated. If the root of 𝑄 is an ∧ node, the algorithm continues

to recurse over the two children and joins each pair of obtained

subtrees. If the root of 𝑄 is an ∨ node, the algorithm considers

three cases, as mentioned above: (1) converting the root into ∧ and

recursing over both of its children, (2) converting the root into ∧,

negating the right child, and recursing over both of its children,

and, finally, (3) converting the root into ∧, negating the left child,

and recursing over both of its children, All solutions to the three

cases are added to the list of c-instances 𝑟𝑒𝑠 . If the root of 𝑄 is a

∀ or ∃ quantifier, the algorithm recurses over the child of the root

and adds the resulting trees to 𝑟𝑒𝑠 .

Chase for conjunctive trees. The main chase procedure utilizes

Algorithm 1 and applies it on the conjunctive tree obtained from

the conversion algorithm. It gets a schema, a syntax tree, and a limit

as input. It first converts the input tree into a set of conjunctive

trees using the conversion algorithm. It then calls Algorithm 1 with

each one of the conjunctive trees and adds the resulting c-instances

to the list of results which is then outputted.

Soundness and complexity. The soundness of the algorithm, i.e.,

that it returns a set of minimal satisfying c-instances, follows from

the fact that the final set is returned by Algorithm 1. Although

there is an exponential dependency in the number of operators,

the algorithm gives a better running time by avoiding recursive

calls to split a query tree into three query trees recursively for the

disjunction operator, at the cost of possibly not generating some

satisfying c-instances that are generated by Algorithm 1.

Other optimizations. The time complexity is also largely affected

by the number of labeled nulls in each domain, especially when

handling universal quantifiers. Hence, we try to optimize the algo-

rithm by disallowing the universal quantifier to add new labeled

nulls, though this might lose completeness. Moreover, notice that

our Tree-Chase-BFS is always initially called with I0 =an empty

c-instance, we could manipulate it to achieve different coverage by

calling Tree-Chase-BFS on a c-instance that is properly initialized

with the tuples or atomic conditions we target to cover. We further

evaluate these optimizations in Section 5.

Setting the limit parameter in Algorithm 1. The 𝑙𝑖𝑚𝑖𝑡 parame-

ter can be set in several different manners in practice. One approach

is setting a default 𝑙𝑖𝑚𝑖𝑡 according to query complexity. 𝑙𝑖𝑚𝑖𝑡 de-

termines the maximal size of the c-instance. In our experimental

results (Section 5) we have seen that it can be set to some multiple

of the number of query atoms to safely allow for a c-instance to

covers all the atoms of the query (we have used a multiple of 2

in our evaluation). Another alternative, aimed at an interactive

experience, is to set a timeout parameter instead of the 𝑙𝑖𝑚𝑖𝑡 (as

done in Section 5), thus allowing Algorithm 1 to explore higher

limits as needed up to the allotted time.

5 EXPERIMENTS

We investigate the performance of our approach and compare it

to different variations of our approach in the following aspects:

(1) runtime for varying query complexity (2) varying the limit

parameter in Algorithm 1, (3) properties of the output c-instances,

and (4) case studies showing the actual obtained c-instances for a

sample of the experimental queries.

Setup. We implemented our methods in Python 3.7. We ran all ex-

periments locally on a 64-bit Ubuntu 18.04 LTS server with 3.20GHz

Intel Core i7-8700 CPU and 32GB 2666MHz DDR4 RAM. We com-

pare the following variants of our algorithms and optimizations.

• Disj-Naive: this method implements the exhaustive chase

procedure described in Section 4.2.

• Conj-Naive: this method implements the optimized con-

junctive tree chase procedure described in Section 4.3 that

converts the original syntax tree into a set of syntax trees

without disjunction.

• Disj-EO/Conj-EO: this method adapts Disj-Naive/Conj-

Naive by only allowing the algorithm to add labeled nulls to

the c-instance when handling an existential quantifier node.

• Disj-Add/Conj-Add: this method first runs Disj-EO(or

Conj-EO) on the empty c-instance, then gets the minimal

c-solution. If there are still leaf atoms not covered by any of

the c-instance in the c-solution, then it iterates over every
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Figure 8: Running time vs. various measures of query complexity. 𝑙𝑖𝑚𝑖𝑡 = 10, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 600𝑠𝑒𝑐 .

Dataset # Queries Mean # Atoms Mean # Quantifiers Mean # Or Mean Height

Beers 35 6.40 13.94 2.17 9.54

TPC-H 28 11.96 23.07 4.18 12.07

Table 1: Dataset statistics.

remaining uncovered leaf atom, creating corresponding la-

beled nulls and adding the atom to the initial c-instance, and

runs Disj-EO (Conj-EO resp.) on the initialized c-instance.

We evaluate both the efficiency/scalability of our algorithms in

terms of runtime and the quality of results with respect to different

measures, and compare them against systems from related work.

Datasets. We used two datasets in our experiments, Beers and

TPC-H. For Beers dataset, queries in these experiments come from

submissions by students for an assignment in an undergrad data-

base course. We picked 5 questions (skipped those with only simple

selection and join) and sampled a few students’ queries, then man-

ually rewrote them into domain relational calculus. There were

5 (correct) standard queries and 10 students’ wrong queries; we

also considered the difference between the standard queries and

the wrong queries (and also the opposite direction), resulting in

additional 20 queries. Some queries are very complex as they use

the difference operator multiple times, resulting in nested universal

quantification in the DRC query. Similarly, for TPC-H, we picked

4 queries (Q4, Q16, Q19, and Q21) and dropped their aggregate

functions, then made two wrong queries each, resulting in 28 test

queries in total. The statistics of the datasets are in Table 1.

5.1 Performance Evaluation

Scalability. To evaluate the scalability of our approach, we study

how query complexity affects the running time. We consider four

measures of query complexity: (1) number of nodes in the query

tree, (2) the height of the query tree, (3) number of universal quanti-

fiers plus number of disjunction that is below a universal quantifier,

and (4) the number of both universal and existential quantifiers.

Although most of these parameters are specific to our algorithms

that operate on DRC queries, the number of universal quantifiers

also has a corresponding complexity notion in the SQL form since

each universal quantifier in DRC would lead to at least one negated

sub-query in SQL.

Example 12. Recall the query in Figure 3 and its syntax tree in

Figure 5. The number of nodes in the tree is 27 (measure (1)), the

height of the tree is 8 (measure (2)), the query contains 2 universal

quantifier, 3 disjunctions below it, and 6 existential quantifiers, so

measure (3) is 5 and (4) is 8. For reference, the queries 𝑄𝐴 and 𝑄𝐵
from our running example are shown in SQL in Figure 9.

We set the limit threshold to be 10 for the Beers dataset and

15 for TPC-H, and stops the algorithm if it does not finish in 10

SELECT l.beer, s.bar

FROM Likes l, Serves s

WHERE l.drinker LIKE 'Eve␣%' AND

l.beer = s.beer

AND NOT EXISTS(

SELECT * FROM Serves

WHERE beer = s.beer AND price >

s.price);

(a) Correct query𝑄𝐴

SELECT S1.beer, S1.bar

FROM Likes L, Serves S1, Serves S2

WHERE L.drinker LIKE 'Eve%' AND

L.beer = S1.beer AND L.beer = S2.

beer

AND S1.price > S2.price;

(b) Incorrect query𝑄𝐵

Figure 9: Queries from our running example in SQL.
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Figure 10: Result quality by query complexity. 𝑙𝑖𝑚𝑖𝑡 =

10, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 600𝑠𝑒𝑐 .

minutes (20 minutes for TPC-H). The results are shown in Figure 8

and Figure 11, respectively. We report the average running time for

different queries with the same value of the complexity measure.

As shown in in Figure 8, the running time increases with query

complexity. Disj-Naive has the worst time complexity (more than

exponential), which did not finish for most of the complex queries

with more than 10 quantifiers, followed by Disj-EO and Disj-Add,

whereas Conj-Naive, Conj-EO, Conj-Add perform better. The

running time of Conj-Naive, Conj-EO, Conj-Add increases ex-

ponentially as expected since their complexity largely depends on

the number of conjunctive syntax trees generated from the origi-

nal query. Compared to the total number of nodes and the height,

the number of universal quantifiers and the number of disjunction

nodes are more crucial to the growth in the running time. Similar

trends are illustrated in Figure 11, whereas Conj-EO still performs

better than Disj-EO, while the running time of Conj-Add is very

close to Disj-Add. We conjecture that this is because the overall

complexity of queries in the TPC-H dataset is much higher than the

Beers dataset, as shown in Table 1, leading to more generated con-

junctive syntax trees. Our results indicate that our solution scales

well for complex schemas and queries (except for very complex and

long queries: for only 4 extremely complex cases out of the 28 cases

in the TPC-H dataset, our algorithm failed to return any results) .

Result quality. Our optimized approaches (Conj-EO, Disj-EO,

Conj-Add and Disj-Add) run much faster than Disj-Naive by com-

promise on the completeness of the minimal c-solution to different

extents. To evaluate the result quality of these approaches in terms

of both completeness and minimality, we show in Figure 10 the

number of distinct coverage from the returned c-solutions and the
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Figure 11: Running time and result quality by query complexity

on TPC-H dataset 𝑙𝑖𝑚𝑖𝑡 = 15, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 1200𝑠𝑒𝑐 .
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Figure 12: Parameter sensitivity varying limit. Disj-Add.
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Figure 13: Parameter sensitivity varying limit. Conj-Add.

average size of the c-solutions. Notice that the number of returned

minimal c-solution of each variant can be different (either they

are unable to find some results, e.g. Disj-EO returns a subset of

Disj-Add; or some variants finish before the timeout but the others

do not), to guarantee a fair comparison, for each query we only con-

sider c-solutions with a coverage set returned by all of the variants.

For example, for a query 𝑄 if Conj-Naive returns two c-solutions

with coverage 𝐶1 and 𝐶2, and Disj-Add returns three c-solutions

with coverage𝐶1,𝐶2,𝐶3, we will only report the average c-solution

size of the two with coverage 𝐶1 and 𝐶2 for 𝑄 .

Figure 10 shows that Disj-Add returns more distinct coverage

sets in most cases, while Conj-Add, Conj-Naive,Conj-EO, and

Disj-EO might fail to return any satisfying instances. There are a

few exceptions for some very complex queries where Disj-Add did

not finish before timeout and thus Conj-Add returns more distinct

coverage sets. Although Disj-Naive did not finish running in most

cases, the c-solutions it returns can be smaller than other variants

when there are more than 10 quantifiers in the query. There are few

cases where the Disj-Add and Disj-EO return smaller c-solutions

compared to the variants using conjunctive trees.

Parameter sensitivity. To ensure that the algorithm terminates,

we used a limit parameter to restrict the size of the c-instances.

Figure 12 and Figure 13 show how this limit affects the running

time and completeness for Disj-Add and Conj-Add. Although the

running time grows exponentially with the query complexity, Disj-

Add runs one order of magnitude faster when limit=6 than limit=10,

losing completeness only when the query tree is very complex. For

Conj-Add, the difference in running time when varying the limit

is negligible in most cases, and the number of distinct returned

coverage sets only changes for the most complex queries.

Interactivity. To improve interactivity, our algorithms can output

the instances one at a time as soon as they are generated, so users

can start exploring immediately and have a more interactive expe-

rience. The time to produce the first instance for our algorithms

on the Beers dataset is only 4.78 seconds on average (DisjAdd) or

0.77 seconds (ConjAdd), and the average delay between two con-

secutive output instances with different coverage is 18.34 seconds

(DisjAdd) or 5.22 seconds (ConjAdd). While on the TPC-H dataset,

the time to produce the first instance is longer but still tolerable:

101.25 seconds on average (DisjAdd) or 88.02 seconds (ConjAdd),

and the average delay between two consecutive output instances

with different coverage is 19.12 seconds (DisjAdd) or 54.16 seconds

(ConjAdd). Note that doing so may risk returning non-minimal

instances, as minimality is verified in postprocessing (Section 4.2).

Another option is to start with the optimized version (Section 4.3)

and if further insights are needed, run the exhaustive search (Sec-

tion 4.2). We also note that slightly longer wait times might be

acceptable in some scenarios, e.g., providing offline feedback to

student solutions, or to help students/instructors when manual

debugging would take significantly more effort for complex queries

or subtly wrong solutions.

5.2 Case Study

By providing the “basis” to a query 𝑄 , our work yields a set of

abstract instances that can help users understand and debug their

query in practice. To evaluate the usefulness of the set of abstract

instances (the minimal c-solution returned by the algorithms, pro-

viding a proxy for the universal solution), we report one case study

on the same real-world dataset as the performance evaluation from

an undergrad database course. We pick two most complex stan-

dard solution queries from an assignment each with one wrong

query from student submissions. Table 2 shows the solution queries,

wrong queries, and the universal solution for the difference query

of the standard and wrong queries.

The universal solution captures different errors in the wrong

query. To compare, we use the ground instances that serve as “coun-

terexamples” for the wrong queries by a previous system [41] based

on a randomly generated testing database instance.

For 𝑄1 (the same as our running example), the first and the

second c-instances pinpoint that if the drinker’s first name is not

‘Eve’ but has ‘Eve’ as its prefix. While the first c-instance does not

contain the first name condition, it shows that if all three bars serve

the same beer at different prices, the query would go wrong. Note

that if we add to the last instance the condition ¬(𝑑1LIKE‘Eve␣%’),
it is still a satisfying c-instance, but it is not minimal because its

coverage is the same as the second c-instance. In comparison, while

the ground instance by [41] (as in Figure 1) is in the represented

world of the first c-instance, it does not highlight that the reason

behind the wrong query result is that the prices are ordered in a

particular way, but the actual values are unimportant.

For𝑄2, the c-instances in the universal solution indicate that the

query would go wrong if there is a drinker frequents to a bar that

does not serve any beer, no matter the drinker likes a beer or not

(the 1st and 3rd instances). This may pinpoint the error that the

Likes table does not interact with the Serves table. Furthermore, the

2nd, 5th, and 6th c-instances imply that if there is a beer served at a

bar, to make the query return a wrong result, the drinker should not



Query description Queries (DRC) c-instances

𝑄1 : for each beer liked by any

drinker whose first name is Eve,

find the bars that serve this

beer at the highest price

Correct query:𝑄𝐴 in Figure 2a.

Wrong query:𝑄𝐵 in Figure 2b.

𝐼0 in Figure 4

𝐼1 in Figure 6

Drinker(𝑑1, ∗), Drinker(𝑑2, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Likes(𝑑1, 𝑏1), Serves(𝑥1, 𝑏1, 𝑝1),
Serves(𝑥2, 𝑏1, 𝑝2), 𝑑1LIKE‘Eve%’ ∧ ¬(𝑑1LIKE‘Eve␣%’) ∧ ¬(Likes(𝑑2, 𝑏1)) ∧ 𝑝1 < 𝑝2

𝑄2 : Find names of all

drinkers who frequent

only bars that serve

some beer they like

Correct Query:

𝑄
2𝐴 = {(𝑑1) | ∃𝑎1

(
Drinker(𝑑1, 𝑎1)∧

∀𝑥1∀𝑡1
(
¬Frequents(𝑑1, 𝑥1, 𝑡1) ∨ ∃𝑏1, 𝑝1

(Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1))
) )
}

Wrong Query:

𝑄
2𝐵 = {(𝑑1) | ∃𝑎1

(
Drinker(𝑑1, 𝑎1)∧

∀𝑏1
(
∀𝑡1, 𝑡1, 𝑝1 (¬Frequents(𝑑1, 𝑥1, 𝑡1)∨

¬Serves(𝑥1, 𝑏1, 𝑝1)) ∨ Likes(𝑑1, 𝑏1)
) )
}

Showing universal solution for𝑄
2𝐵 −𝑄

2𝐴

Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Likes(𝑑1, 𝑏1), Frequents(𝑑1, 𝑥1, 𝑡1)
Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Likes(𝑑1, 𝑏1), Serves(𝑥1, 𝑏1, 𝑝1),
Frequents(𝑑1, 𝑥2, 𝑡1),¬(Frequents(𝑑1, 𝑥1, 𝑡1))
Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Frequents(𝑑1, 𝑥1, ∗),
Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Likes(𝑑1, 𝑏1),
Serves(𝑥1, 𝑏1, 𝑝1), Frequents(𝑑1, 𝑥1, 𝑡1), Frequents(𝑑1, 𝑥2, 𝑡1)
Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Serves(𝑥1, 𝑏1, 𝑝1), Frequents(𝑑1, 𝑥2, 𝑡1),
¬(Likes(𝑑1, 𝑏1)) ∧ ¬(Frequents(𝑑1, 𝑥1, 𝑡1))
Drinker(𝑑1, ∗), Drinker(𝑑2, ∗), Beer(𝑏1, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Likes(𝑑2, 𝑏1),
Serves(𝑥1, 𝑏1, 𝑝1), Frequents(𝑑2, 𝑥2, 𝑡1),¬(Frequents(𝑑2, 𝑥1, 𝑡1)) ∧ ¬(Likes(𝑑1, 𝑏1))

Drinker(𝑑1, ∗), Beer(𝑏1, ∗), Beer(𝑏2, ∗), Bar(𝑥1, ∗), Bar(𝑥2, ∗), Likes(𝑑1, 𝑏1),
Serves(𝑥1, 𝑏1, 𝑝1), Frequents(𝑑1, 𝑥1, 𝑡1), Frequents(𝑑1, 𝑥2, 𝑡1),¬(Likes(𝑑1, 𝑏2))

Table 2: Queries used in the case study; universal solutions generated using Disj-Add, 𝑙𝑖𝑚𝑖𝑡 = 10. Note that the symbols in

queries (representing the query variables) and the symbols in c-instances (representing labeled nulls) are not the same.

frequent this bar, which could be interpreted as the correct solution

uses the frequents table together with negation in a different way.

Actually, the wrong query joins Frequents with Serves, while the

correct solution joins Likes with Serves. Therefore, the universal

solution provides different perspectives in understanding the query

and formulates a hint on how to modify the wrong query. The

ground instance by [41] only consists of four tuples: Drinker(“Bryan”,

“39934 Main St.”), Beer(“Amstel”, “A. Brewer”), Bar(“The Edge”, “802

Morris St.”), and Frequents(“Bryan”, “The Edge”, 3), which is in the

represented world of the third c-instance from our universal solu-

tion in Table 2. Such a simple counterexample might be less helpful

for users to understand why the query goes wrong, as one would

benefit from the explicit conditions with negation.

5.3 User Study

We conducted a user study for the Beers dataset to evaluate: (R1)

how effective our approach is for explaining and understanding

bugs in queries, and (R2) whether completeness as a quality met-

ric is helpful. For (R1), we specifically compare our approach (c-

instances) with concrete instances [41] having constant values.

Note that our approach takes only the queries and the schema as

input, whereas [41] also takes a database instance as input and

outputs a sub-instance as a concrete counterexample
1
.

Participants. We recruited 64 participants, including 22 graduate

students from CS departments and 42 undergraduate students from

an undergraduate database course. Participation was voluntary

and anonymous, though the undergraduates were offered small

souvenirs as a reward for their participation (we did not get enough

responses from the undergraduates in our initial pilot surveys). The

undergraduate students were already familiar with the schema of

the Beers dataset from an earlier homework; while for the graduate

students, we explained the schema details and also asked about their

familiarity with SQL. We note that the undergraduate students have

also been exposed to the tool using concrete instances developed

by [41] (but only for relational algebra queries); because of this

1
In a pilot study we also compared these approaches against a baseline of not providing

any instances (c-instance or concrete). We found that study questions involving this

baseline significantly increased the length and difficulty of the survey demanding

higher participant efforts to the point of discouraging participation, and that from the

preliminary results we collected, participants did much better with the help of instances.

Hence, in the final user study we excluded the baseline, but asked the question: “When

you learn SQL queries in the future, would you like to see the example instances shown in

this survey to help you understand incorrect queries?” All 64 participants answered yes.

familiarity, concrete instances might hold a slight advantage over

c-instances for these students. Half of the graduate students (11 out

of 22) graduate students declared high familiarity with SQL queries

and the rest reported moderate or low familiarity; our observations

for both groups were similar in this study, therefore we report the

overall statistics for graduate students.

Tasks. We asked all participants to spot errors in two SQL queries

(each has two major errors, see Table 3) querying the Beers data-

base, with the help of either our c-instances or concrete instances

from [41]. We provided each participant with one query followed by

c-instances and other query followed by concrete instances as coun-

terexamples, randomly dividing them into two groups: one group

saw (𝑄1, c-instances) + (𝑄2, concrete instances) and the other saw

(𝑄1, concrete instances) + (𝑄2, c-instances). The order of showing

these two questions for both groups was chosen at random to avoid

any familiarity bias against either c-instances or concrete instances.

Instead of showing completely abstract c-instances, we added an

example concrete value to each variable in the c-instance, showing

one way that it can be grounded. This is a trivial extension done

to help alleviate novices’ potential discomfort with seeing symbols

and conditions alone. This approach somewhat blurs the line be-

tween c-instances and concrete instances, but faithfully represents

how in practice c-instances would be deployed in an educational

setting. Then, for each query we have the treatment group (with

c-instances as explanation) and the control group (with concrete-

value-only instances as explanation). To study (R2), following the

task involving the first c-instance above, we presented a second

c-instance for the same query but with a different coverage (which

would illustrate a different error), and asked the participant what

errors they found upon seeing both c-instances, and whether they

felt the second c-instance provided additional help. (Note that [41]

and other related work, there is no option for generating additional

concrete instances that illustrate different errors in the same query.)

At the end of the study, back to (R1), we also asked the participants

about their preferences between c-instances and concrete instances

for spotting errors in queries.

Results and analysis. Objectively, we evaluate the user perfor-

mance by the number of errors they spotted. Figures 14 show the

percentage of users who failed to spot any error, spotted one error,

and spotted both errors in each group.For example, consider the

last three bars in the left sub-figure in Figure 14, which show the



overall statistics (combining both queries) for all undergraduate

participants. Showing the concrete instance alone is already quite

helpful: only 31% of the users failed to find an error (“total-conc”).

Going from “total-conc” to “total-CI1,” we see a clear performance

improvement among users who were shown c-instances: percent-

age of the users failing to find an error goes down to 19%. Going

further from “total-CI1” to “total-CI2,” we see that as soon as users

are show a second c-instance, practically all of them were able to

spot at least one error, and the majority (64.3%) of them indeed spot

both errors in the query; in contrast, no users were able to spot

both errors with only an concrete instance (“total-conc”). Similar

conclusions can be drawn from per-query statistics (shown by the

first two batches of three bars in the left part of Figure 14) as well

as from statistics for graduate students (shown in the right part of

Figure 14). Overall, these results convincingly show that for (R1),

c-instances hold a clear advantage over concrete instances in ob-

jectively improving participants’ performance in spotting errors in

queries; and for (R2), showing multiple c-instances with different

coverage dramatically improves participants’ ability in spotting

remaining errors in queries.

A number of other observations from these results are worth

noting but largely confirms intuition. First, 𝑄2 was easier to debug

than 𝑄1. Second, graduate students overall perform better than

undergraduates. The coupling of these factors explains why we

did not see any difference from “Q2-conc” to “Q2-CI1” in the right

part of Figure 14; apparently most graduate students got enough

help from the concrete instance in order to spot at least one error

in the simpler 𝑄2. Nonetheless, they still needed the help with an

additional c-instance to uncover the second error.

Figures 15 and 16 summarize the subjective responses from par-

ticipants regarding their preference for c-instances vs. concrete

instances, and their opinion on the usefulness of additional c-

instances. A clear majority of the participants found the additional

c-instance useful per Figure 16. However, from Figure 15, it is ap-

parent that many participants prefer viewing concrete instances,

despite the fact that they perform objectively better with the help

of c-instances. This preference is stronger among undergraduates—

only a third preferred c-instances, compared with more than a

half for concrete instances. A relatively lower fraction of graduate

students—but still a half of them—preferred concrete instances. It

would be interesting to conduct additional study to pinpoint their re-

luctance to embrace c-instances despite their objective advantages,

but there are several possible explanations. First, the abstraction

provided by variables and conditions the c-instances may be seen

as more intimidating, especially for undergraduates. This conjec-

ture is corroborated by some of the free-form feedback comments

we received. Second, as mentioned earlier in this section, the un-

dergraduates already had some familiarity working with concrete

instances before this user study. Overall, the fact that still about

a third of the participants preferred c-instances shows that there

is a sizable and compelling demand for this approach. We also be-

lieve we can mitigate some of the reluctance in this user base with

improved interfaces and familiarity.

6 CONCLUSIONS AND FUTUREWORK

We have defined and studied the problem of compact query char-

acterization using the coverage of abstract c-instances. We have

Query description Wrong Queries

𝑄1 : for each beer liked by any drinker whose

first name is “Eve”, find the bars that serve

this beer at the highest price

𝑄𝐵 in Figure 9 (our running example)

𝑄2 : Among the drinkers who frequent “The

Edge”, find the names of those who do not

like “Erdinger”.

SELECTDISTINCT S.beer FROM Serves S,

Likes L WHERE S.bar = ’Edge’ AND S.beer

= L.beer AND L.drinker <> ’Richard’;

Table 3: Queries used in the user study.

Figure 14: User performance on spotting errors; *-conc: con-

crete instance only, *-CI1: the first C-Instance, *CI2: the second C-

Instance (left: undergrad, right: graduate).

9.5%

57.1%

33.3%

No 
preference

Prefer 
concrete 
instances

Prefer C-
Instances

18.2%

50.0%

31.8%

No 
preference

Prefer 
concrete 
instances

Prefer C-
Instances

Figure 15: Preference on explanation types (left: undergraduate,

right: graduate)
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Figure 16: User feedback on “The second C-Instance provided ad-

ditional help” (left: undergraduate, right: graduate)

devised algorithms and optimizations for computing such character-

izations building on the concept of chase and utilizing the structure

of the syntax tree. We experimentally showed that our approach

is effective at finding c-instances that characterize the query and

examined the effect of query complexity and parameter changes

on the scalability of our approach. In future work, we plan to study

the development of further optimizations for finding such solution

for more query classes different properties of c-instances. In this

paper we showed that the problem of finding a universal solution

is poly-time for CQ
¬

queries, while the decision version is unde-

cidable for general DRC queries: understanding the computability

and complexity for universal solutions for other query classes in

between is another interesting research direction. Finally, while

our model can support queries with the same final aggregate and

different bodies by removing the aggregate, extending our model to

support arbitrary aggregate queries is another intriguing direction

of future work.
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A APPENDIX

This appendix is part of the full version of the paper “Understanding

Queries by Conditional Instances”.

A.1 Omitted Pseudocodes and Proof

We given the pseudo code of the algorithms that was omitted from

Section 4.2. Namely, Algorithms 4 and 6 that handle the disjunction

connective and universal operator in Algorithm 6 (Lines 11 and

15, respectively). We further give the pseudo code and proof of

correctness for the procedure that checks whether a c-instance

satisfies a query. This procedure, called Tree-SAT, is used in Line

13 of Algorithm 1.

Algorithm 4 Handle-Disjunction

Handle-Or(R,𝑄, 𝐼 , 𝑓 )
1 ConjTrees = Expand-DisjTree(𝑄.𝑟𝑜𝑜𝑡 )
2 for𝑇 ∈ 𝐶𝑜𝑛𝑗𝑇𝑟𝑒𝑒𝑠
3 res.extend(Tree-Chase-BFS(R,𝑇 , 𝐼 , 𝑓 ))
4 return 𝑟𝑒𝑠

Algorithm 5 Handle-Existential-Operator

Handle-Existential(R,𝑄, 𝐼 , 𝑓 )
1 for 𝑥 ∈ 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
2 𝑔 = 𝑓 ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑥 }
3 res.extend(RD-Tree-Chase-Naive(R,𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑔, 𝑙𝑖𝑚𝑖𝑡 ))
4 Create a fresh labeled null 𝑦 in the domain of𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

5 𝑔 = 𝑓 ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑦 }
6 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∪ {𝑦 }
7 res.extend(RD-Tree-Chase-Naive(R,𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑔, 𝑙𝑖𝑚𝑖𝑡 ))
8 return 𝑟𝑒𝑠

Checking if a c-instance satisfies a query. The Tree-SAT pro-

cedure is used in Algorithm 1 (Line 13) to verify that a c-instance

satisfies the syntax tree of a query. We next describe the pseudo

code of the procedure and prove its correctness. The algorithm gets

as input the query syntax tree 𝑄 , the current c-instance 𝐼 , and the

current homomorphism ℎ. It starts by adding ∃ quantifier for every

free variable in 𝑄 (Lines 1–3) and checks whether 𝑄 is a single

atom. If it is, the algorithm checks whether this atom is negated or

an atomic condition and whether it is contained in the condition

of 𝐼 , 𝜙 (𝐼 ), or if the atom is not negated and is mapped to a tuple

in 𝐼 . In both cases the algorithm returns True and returns False

otherwise (Lines 4–8). If the root of 𝑄 is a ∧ node the algorithm

checks recursively whether both of its subtrees are satisfied by 𝐼

and ℎ (Lines 9–10). If the root of𝑄 is a ∨ node the algorithm checks

recursively whether at least one of its subtrees are satisfied by 𝐼 and

ℎ (Lines 11–12). If the root of 𝑄 is a ∃ node the algorithm checks

recursively whether there is a mapping for the quantified variable

to a labeled null 𝑥 that satisfies the subtree of the quantifier with 𝐼

and ℎ extended with this mapping (Lines 13–18). If the root of 𝑄 is

a ∀ node the algorithm checks recursively whether all mappings

to labeled nulls 𝑥 for the quantified variable satisfy the subtree of

the quantifier with 𝐼 and ℎ, extended with these mappings (Lines

19–24).

Algorithm 6 Handle-Universal

Handle-Universal(R,𝑄, 𝐼 , ℎ, 𝑙𝑖𝑚𝑖𝑡 )
1 res = [], 𝐼𝑙𝑖𝑠𝑡 = [𝐼 ]
2 if 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = ∅
3 𝑟𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐼 )
4 else

5 for 𝑥 ∈ 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
6 𝑔 = ℎ ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑥 }
7 𝑐𝑢𝑟 = []
8 for 𝐽1 ∈ 𝐼𝑙𝑖𝑠𝑡
9 𝐼𝑙𝑖𝑠𝑡 ′ = Tree-Chase-BFS(R,𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐽1, 𝑔, 𝑙𝑖𝑚𝑖𝑡 )

10 for 𝐽2 ∈ 𝐼𝑙𝑖𝑠𝑡 ′
11 if IsConsistent( 𝐽2)
12 cur.append(𝐽2)

13 𝐼𝑙𝑖𝑠𝑡 = 𝑐𝑢𝑟

14 𝑟𝑒𝑠 = 𝑟𝑒𝑠 ∪ 𝐼𝑙𝑖𝑠𝑡
15 Create a fresh labeled null 𝑦 in the domain of𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

16 𝑔 = ℎ ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑦 }
17 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) = 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) ∪ {𝑦 }
18 𝑐𝑢𝑟 = []
19 for 𝐽1 ∈ 𝐼𝑙𝑖𝑠𝑡
20 𝐼𝑙𝑖𝑠𝑡 ′ = Tree-Chase-BFS(R,𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐽1, 𝑔, 𝑙𝑖𝑚𝑖𝑡 )
21 for 𝐽2 ∈ 𝐼𝑙𝑖𝑠𝑡 ′
22 if IsConsistent( 𝐽2)
23 cur.append(𝐽2)

24 𝑟𝑒𝑠 = 𝑟𝑒𝑠 ∪ 𝑐𝑢𝑟
25 return 𝑟𝑒𝑠

Proposition A.1. Given 𝐼 , and 𝑄 , Algorithm 7 returns True for

𝑄 and 𝐼 iff 𝐼 satisfies 𝑄 .

Proof. We prove that 𝑄 is satisfied by 𝐼 with the homomor-

phism ℎ iff Algorithm 7 returns True for some 𝑄 , 𝐼 , and ℎ using

induction over the size of 𝑄 . If 𝑄 is of size 1, then the algorithm

returns True in Line 6 after checking that the only atom in 𝑄 has

a mapping to the tuple in 𝐼 if it is not negated, and if it is negated

or an atomic condition, it checks whether the global condition of 𝐼

contains the tuple or atomic condition mapped to the atom in 𝑄 .

For the induction hypothesis, assume that for every 𝑄 of size < 𝑛,

Algorithm 7 returns True for𝑄 and 𝐼 iff 𝐼 satisfies𝑄 . Now, suppose

𝑄 is of size 𝑛.

If 𝑄 = 𝑄1 ∧ 𝑄2, Algorithm 7 returns True in Line 10 iff both

𝑄1 and 𝑄2 are satisfied by 𝐼 and ℎ. According to the induction

hypothesis, both 𝑄1 and 𝑄2 are satisfied by 𝐼 and ℎ iff then the

algorithm returns True on both.

If 𝑄 = 𝑄1 ∨ 𝑄2, Algorithm 7 returns True in Line 10 iff one

of 𝑄1 or 𝑄2 are satisfied by 𝐼 and ℎ. According to the induction

hypothesis, 𝑄1 or 𝑄2 are satisfied by 𝐼 and ℎ iff then the algorithm

returns True for one of them.

If 𝑄 = ∃𝑥 . 𝑄 ′
, 𝑄 is satisfied by 𝐼 and ℎ iff there exists 𝑦 ∈

𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛(𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒), 𝑄 ′
is satisfied by 𝐼 and ℎ ∪ {𝑥 = 𝑦}. In

Line 14, the algorithm iterates over the domain of the quantified

variable, adds it to the mapping list and checks whether replacing

the quantified variable with its current mapping satisfies the subtree

rooted at the child of the ∃ quantifier. Indeed, since the algorithm

tries all mappings of 𝑥 from the domain, it will try 𝑥 = 𝑦. Thus,

Algorithm 7 will return True iff 𝑄 is satisfied by 𝐼 and ℎ.

If 𝑄 = ∀𝑥 . 𝑄 ′
, 𝑄 is satisfied by 𝐼 and ℎ iff for all

𝑦 ∈ 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛(𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒),𝑄 ′
is satisfied by 𝐼 and ℎ∪{𝑥 = 𝑦}.

In Line 20, the algorithm iterates over the domain of the quantified

variable, adds it to the mapping list and checks whether replacing

the quantified variable with its current mapping of 𝑥 satisfies 𝑄 ′
.



Algorithm 7 Tree-SAT

Tree-SAT(𝑄, 𝐼, 𝑓 )
Input:𝑄 : a syntax tree of a DRC query;

𝐼 : current c-instance;

𝑓 : current mapping from V𝑄 ∪ C𝑄 → L𝐼 ∪ C𝐼 .
Output: True iff 𝐼 satisfies𝑄

1 if 𝑄 has free variables

2 for 𝑥 ∈ 𝐹𝑟𝑒𝑒𝑉𝑎𝑟 (𝑄)
3 𝑄 = ∃𝑥𝑄 (𝑥)
4 if Q.root is an atom

5 if (Q.negated and ¬𝑓 (𝑄.𝑟𝑜𝑜𝑡 .𝑎𝑡𝑜𝑚) ∈ 𝜙 (𝐼 )) or

(Q = 𝑥 ◦ 𝑦 and 𝑓 (𝑥) ◦ 𝑓 (𝑦) ∈ 𝜙 (𝐼 )) or

(Q.negated = False and 𝑓 (𝑄.𝑟𝑜𝑜𝑡 .𝑎𝑡𝑜𝑚) ∈ 𝐼 )
6 return True

7 else

8 return False

9 if Q.root.operator ∈ {∧}
10 return

Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑙𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑓 )∧ Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑟𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑓 )
11 elseif Q.root.operator ∈ {∨}
12 return

Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑙𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑓 )∨ Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑟𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑓 )
13 elseif Q.root.operator ∈ {∃}
14 for 𝑥 ∈ 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
15 𝑔 = 𝑓 ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑥 }
16 if Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑔)
17 return True

18 return False

19 elseif Q.root.operator ∈ {∀}
20 for 𝑥 ∈ 𝐼 .𝑑𝑜𝑚𝑎𝑖𝑛 (𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
21 𝑔 = 𝑓 ∪ {𝑄.𝑟𝑜𝑜𝑡 .𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑥 }
22 if 𝑛𝑜𝑡 Tree-SAT(𝑄.𝑟𝑜𝑜𝑡 .𝑐ℎ𝑖𝑙𝑑, 𝐼 , 𝑔)
23 return False

24 return True

If it does not, it returns False. If all mappings of 𝑥 satisfy 𝑄 ′
, the

algorithm returns True. According to the induction hypothesis,

for each such mapping of 𝑥 , Indeed, since the algorithm tries all

mappings of 𝑥 from the domain, Algorithm 7 will return True iff

𝑄 ′
with this mapping is satisfied by 𝐼 and ℎ ∪ {𝑥 = 𝑦}. Thus,

Algorithm 7 will return True iff 𝑄 is satisfied by 𝐼 and ℎ.

□

Checking if a c-instance is consistent. To guarantee correctness

and reduce the search space, Algorithm 1 verifies that a c-instance

is consistent every time adding a c-instance to the queue (Line 13,

Line 18). As defined in Definition 5, a c-instance I is consistent

if 𝑃𝑊𝐷 (I) ≠ ∅, which is reduced to deciding the satisfiablity of

the global condition of I. In our implementation we used the Z3

SMT solver to support complex constraints involving integers, real

numbers, and strings.

A.2 Additional Examples

We next provide examples for the algorithms described in the paper.

Example 13 (Example of Algorithm 1). We demonstrate the

operation of Algorithm 1 using the query 𝑄𝐵 −𝑄𝐴 shown in Figure 3

with its syntax tree in Figure 5. Suppose 𝑙𝑖𝑚𝑖𝑡 = 20 (basically, the

𝑙𝑖𝑚𝑖𝑡 does not affect the execution), and the algorithm begins with

empty ℎ0 and I0.
At the beginning (Lines 2-5 in Algorithm 1), for each free variable

in 𝑄𝐵 − 𝑄𝐴 (𝑥1, 𝑏1), a labeled null is created and added to the do-

main of I0 and then to ℎ0. Now we have I0 .Dom(Bar.𝑛𝑎𝑚𝑒) = {𝑥1},
I0 .Dom(Beer.𝑛𝑎𝑚𝑒) = {𝑏1}, ℎ = {𝑥1 → 𝑥1, 𝑏1 → 𝑏1}.

Then we add I0 to the queue and start the BFS procedure. The

current I0 has not been visited (Lines 10-12), and it does not satisfy

the query tree and is consistent (Line 13), so we call Algorithm 2.

In Algorithm 2, it first goes into the ∃ case, and since the domain of

drinker names is empty, we can only create new labeled null 𝑑1 and

add 𝑑1 → 𝑑1 to 𝑔, and do the same for 𝑝1 when we run algorithm 1

recursively. The formula under ∃𝑑1, 𝑝1 (· · · ) has no quantifiers and
only conjunction. Therefore, we directly obtain a c-instance from its

left branch (Lines 2-7 Algorithm 2) with the tuples Likes(𝑑1, 𝑏1) and
Serves(𝑥1, 𝑏1, 𝑝1), and the condition 𝑑1 LIKE ′𝐸𝑣𝑒%′

.

For the next existential quantifier node ∃𝑥2, however, there are two
options: we can either map 𝑥2 to the existing labeled null 𝑥1 created

earlier, or we can create a new 𝑥2 and add it to the domain of bar

names in the instance. It is the same for ∃𝑝2. Hence, we can reach

the node ∧ below ∃𝑥2, 𝑝2 with four different mappings for 𝑥2 and 𝑝2:

{𝑥2 → 𝑥1, 𝑝2 → 𝑝1}, {𝑥2 → 𝑥1, 𝑝2 → 𝑝2}, {𝑥2 → 𝑥2, 𝑝2 → 𝑝1},
{𝑥2 → 𝑥2, 𝑝2 → 𝑝2}. Again, we obtain c-instances by adding the

atoms on the left branch of the ∧ node. The resulting instances will be

inconsistent if we choose to map 𝑝2 to 𝑝1, because there is an atomic

condition 𝑝1 > 𝑝2, which will be false if we map 𝑝1 and 𝑝2 to the

same labeled null.

Continuing, we use the case {𝑥2 → 𝑥2, 𝑝2 → 𝑝2} to illustrate.

Then, we come to the ∀𝑑2 node. Note that, currently, we have one

labeled null 𝑑1 in the domain of drinker names, thus Algorithm 6

will try first mapping 𝑑2 to 𝑑1 and traverse the next node (Lines 5-7),

where ∀𝑝3 would first map 𝑝3 to 𝑝1, 𝑝2 one by one and goes to the ∨
node, where the disjunction algorithm will enumerate all three cases

that convert disjunction to conjunction. Assume that for {𝑝3 → 𝑝1},
we negate the right branch of ∨ and keep the left branch the same,

then one possible conjunction under the mapping from the left branch

can be Likes(𝑑1, 𝑏1) ∧𝑑2 LIKE ‘Eve %’ ∧Serves(𝑥1, 𝑏1, 𝑝1) (certainly, we
cannot have ¬Likes(𝑑1, 𝑏1) or ¬Serves(𝑥1, 𝑏1, 𝑝1)). We transform the

right branch into∀𝑥3∀𝑝4 (¬Serves(𝑥3, 𝑏1, 𝑝4)∨𝑝3 ≥ 𝑝4) to get negation
only on the leaves, and we have:

(1) Serves(𝑥1, 𝑏1, 𝑝1) ∧ 𝑝1 ≥ 𝑝1 for {𝑥3 → 𝑥1, 𝑝4 → 𝑝1}
(2) ¬Serves(𝑥2, 𝑏1, 𝑝1) ∧ 𝑝1 ≥ 𝑝1 for {𝑥3 → 𝑥2, 𝑝4 → 𝑝1}
(3) ¬Serves(𝑥1, 𝑏1, 𝑝2) ∧ 𝑝1 ≥ 𝑝2 for {𝑥3 → 𝑥1, 𝑝4 → 𝑝2}
(4) Serves(𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 ≥ 𝑝2 for {𝑥3 → 𝑥2, 𝑝4 → 𝑝2}
For {𝑝3 → 𝑝2}, we keep both branches the same. One possible

conjunction under themapping from the left branch can be Likes(𝑑1, 𝑏1)
∧¬(𝑑2 LIKE ‘Eve %’) ∧¬Serves(𝑥1, 𝑏1, 𝑝2); for the right branch, we can
map 𝑥3 to 𝑥1 and 𝑝4 to 𝑝1 and thus we get Serves(𝑥1, 𝑏1, 𝑝1) ∧𝑝2 < 𝑝1.

By merging the resulting instances in each ∧ node, we can obtain the

c-instance I2 in Figure 7.

Example 14 (Example of the optimized approach in Section

4.3). A partial result of the algorithm is shown in Figure 17, showing

two out of the three obtained trees for the subtree of the different

query 𝑄𝐵 − 𝑄𝐴 shown in Figure 5. The top tree negates the right

subtree below the ∨ connective, while the bottom negates the left one,



∀𝒅2, 𝒑3

∧

∃𝒙3, 𝒑4

∧

𝑝3 < 𝑝4Serves(𝑥3, 𝑏1, 𝑝4)

∧

Serves(𝑥1, 𝑏1, 𝑝3)∧

(𝑑2 LIKE ’Eve␣%’)Likes(𝑑2, 𝑏1)

∀𝒅2, 𝒑3

∧

∀𝒙3, 𝒑4

∧

𝑝3 ≥ 𝑝4¬Serves(𝑥3, 𝑏1, 𝑝4)

∨

¬Serves(𝑥1, 𝑏1, 𝑝3)∨

¬(𝑑2 LIKE ’Eve␣%’)¬Likes(𝑑2, 𝑏1)

Figure 17: Two of the three conjunctive right subtrees of the

syntax tree of 𝑄𝐵 −𝑄𝐴 depicted in Figure 5. The trees repre-

sent ¬𝐴∧𝐵 and 𝐴∧¬𝐵, where 𝐴 (𝐵) is the left (right) subtree

of the top ∧ connective.

representing the two cases where ¬𝐴 ∧ 𝐵 and 𝐴 ∧ ¬𝐵. For instance,
in the top tree, the formula in the right subtree that was originally

¬Serves(𝑥1, 𝑏1, 𝑝3) ∨ (¬Likes(𝑑2, 𝑏1) ∧¬(𝑑2 LIKE ‘Eve %’)) has been con-
verted into Serves(𝑥1, 𝑏1, 𝑝3) ∧ (Likes(𝑑2, 𝑏1) ∧ 𝑑2 LIKE ‘Eve %’).

A.3 Query Details

Tables 4 and 5 show the queries that we used in our experiments

and their complexity. Note that in order to run our algorithms on

TPC-H queries, we modified the original queries and rewrote them

in DRC.



Query description DRC Query Size Height # ∀+∃ # Or # Or Below ∀ + # ∀
Correct𝑄

1𝐴 {(𝑥1, 𝑏1) | ∃𝑑2, 𝑝3 ( ( (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝3) ∧ 𝑑2 𝐿𝐼𝐾𝐸 “𝐸𝑣𝑒 %”) ∧ 𝐿𝑖𝑘𝑒𝑠 (𝑑2, 𝑏1)) ∧
∀𝑝4, 𝑥3 (¬𝑠𝑒𝑟𝑣𝑒𝑠 (𝑥3, 𝑏1, 𝑝4) ∨ 𝑝4 ≤ 𝑝3)) }

15 9 10 1 3

Wrong𝑄
1𝐵 {(𝑥1, 𝑏1) | ∃𝑑1, 𝑝1 ( ( (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1) ∧ 𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1)) ∧ 𝑑1 𝐿𝐼𝐾𝐸 “𝐸𝑣𝑒%”) ∧ ∃𝑥2, 𝑝2 ( (𝑝2 <

𝑝1 ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏1, 𝑝2)) ∧ 𝑥1 ! = 𝑥2)) }
17 10 11 0 0

𝑄
1𝐴-𝑄

1𝐵 𝑄
1𝐴-𝑄

1𝐵 31 11 20 6 9

𝑄
1𝐵 -𝑄

1𝐴 𝑄
1𝐵 -𝑄

1𝐴 31 11 20 3 3

Correct𝑄
2𝐴 {(𝑏1) | ∃𝑡𝑟1 (𝐵𝑒𝑒𝑟 (𝑏1, 𝑡𝑟1) ∧ ∀𝑡𝑑1¬𝐿𝑖𝑘𝑒𝑠 (𝑡𝑑1, 𝑏1)) } 6 5 4 0 1

Wrong𝑄
2𝐵 {(𝑏1) (∃𝑥1, 𝑝1𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1) ∧ ¬∃𝑑1𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1)) } 7 5 5 0 1

𝑄
2𝐴-𝑄

2𝐵 𝑄
2𝐴-𝑄

2𝐵 13 6 9 1 3

𝑄
2𝐵 -𝑄

2𝐴 𝑄
2𝐵 -𝑄

2𝐴 13 6 9 1 3

Correct𝑄
3𝐴 {(𝑏1, 𝑥1) | ∃𝑡𝑝1 (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑡𝑝1) ∧ ∀𝑡𝑝2, 𝑡𝑥2 (¬𝑠𝑒𝑟𝑣𝑒𝑠 (𝑡𝑥2, 𝑏1, 𝑡𝑝2) ∨ 𝑡𝑝2 ≤ 𝑡𝑝1)) } 10 8 7 1 3

Wrong𝑄
3𝐵 {(𝑏1, 𝑥1) | ∃𝑥2, 𝑝1, 𝑝2 ( ( (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏1, 𝑝2)) ∧ 𝑝2 ≤ 𝑝1) ∧ 𝑥1 == 𝑥2) } 12 9 8 0 0

𝑄
3𝐴-𝑄

3𝐵 𝑄
3𝐴-𝑄

3𝐵 21 10 14 4 7

𝑄
3𝐵 -𝑄

3𝐴 𝑄
3𝐵 -𝑄

3𝐴 21 10 14 1 2

Wrong𝑄
3𝐶 {(𝑏1, 𝑥1) | ∃𝑟1, 𝑝1 (𝐵𝑒𝑒𝑟 (𝑏1, 𝑟1) ∧ (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1) ∧ ¬∃𝑥2, 𝑝2 (𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 < 𝑝2))) } 13 10 9 1 3

𝑄
3𝐴-𝑄

3𝐶 𝑄
3𝐴-𝑄

3𝐶 22 11 15 3 6

𝑄
3𝐶 -𝑄

3𝐴 𝑄
3𝐶 -𝑄

3𝐴 22 11 15 2 5

Correct𝑄
4𝐴 {(𝑑1) | ∃𝑡𝑎1 (𝐷𝑟𝑖𝑛𝑘𝑒𝑟 (𝑑1, 𝑡𝑎1) ∧ ¬∃𝑡𝑥1, 𝑡𝑡1 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑡𝑥1, 𝑡𝑡1) ∧ ¬∃𝑡𝑏1, 𝑡𝑝1 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑡𝑏1) ∧

𝑆𝑒𝑟𝑣𝑒𝑠 (𝑡𝑥1, 𝑡𝑏1, 𝑡𝑝1)))) }
13 10 9 1 3

Wrong𝑄
4𝐵 {(𝑑1) | ∃𝑥1, 𝑏1 (∃𝑝1, 𝑡1 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1)) ∧ 𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1)) } 10 8 7 0 0

𝑄
4𝐴-𝑄

4𝐵 𝑄
4𝐴-𝑄

4𝐵 23 11 16 3 9

𝑄
4𝐵 -𝑄

4𝐴 𝑄
4𝐵 -𝑄

4𝐴 23 11 16 2 5

Wrong𝑄
4𝐶 {(𝑑1) | ∃𝑥1 (∃𝑡1𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡1) ∧ ¬(∃𝑡2𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡2) ∧ ¬∃𝑏1, 𝑝1 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1) ∧

𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1)))) }
13 8 9 1 1

𝑄
4𝐴-𝑄

4𝐶 𝑄
4𝐴-𝑄

4𝐶 26 11 18 3 9

𝑄
4𝐶 -𝑄

4𝐴 𝑄
4𝐶 -𝑄

4𝐴 26 11 18 3 6

Wrong𝑄
4𝐷 {(𝑑1) (∃𝑎1𝐷𝑟𝑖𝑛𝑘𝑒𝑟 (𝑑1, 𝑎1) ∧ ¬∃𝑏1 (∃𝑥1, 𝑡1, 𝑝1 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1)) ∧

¬𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1))) }
13 9 9 2 6

𝑄
4𝐴-𝑄

4𝐷 𝑄
4𝐴-𝑄

4𝐷 26 11 18 2 4

𝑄
4𝐷 -𝑄

4𝐴 𝑄
4𝐷 -𝑄

4𝐴 26 11 18 4 11

Correct𝑄
5𝐴 {(𝑑1) | ∃𝑡𝑎1 (𝐷𝑟𝑖𝑛𝑘𝑒𝑟 (𝑑1, 𝑡𝑎1) ∧ ¬∃𝑡𝑥1 (∃𝑡𝑏1, 𝑡𝑝1 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑡𝑏1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑡𝑥1, 𝑡𝑏1, 𝑡𝑝1)) ∧

¬∃𝑡𝑡1𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑡𝑥1, 𝑡𝑡1))) }
13 9 9 2 5

Wrong𝑄
5𝐵 {(𝑑1) | ∃𝑥1, 𝑡1 (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡1) ∧ ¬∃𝑥2 (∃𝑏1, 𝑝1 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏1, 𝑝1)) ∧

∃𝑡2¬𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥2, 𝑡2))) }
14 10 10 2 6

𝑄
5𝐴-𝑄

5𝐵 𝑄
5𝐴-𝑄

5𝐵 27 11 19 3 8

𝑄
5𝐵 -𝑄

5𝐴 𝑄
5𝐵 -𝑄

5𝐴 27 11 19 3 9

Wrong𝑄
5𝐶 {(𝑑1) (∃𝑏1, 𝑥1, 𝑡1, 𝑝1 ( (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥1, 𝑡1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1)) ∧ 𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1)) ∧

¬∃𝑥2, 𝑏2 (∃𝑝2 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏2) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏2, 𝑝2)) ∧ ¬∃𝑝3, 𝑡2 ( (𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥2, 𝑡2) ∧
𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏2, 𝑝3)) ∧ 𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏2)))) }

25 10 17 2 5

𝑄
5𝐴-𝑄

5𝐶 𝑄
5𝐴-𝑄

5𝐶 38 11 26 7 13

𝑄
5𝐶 -𝑄

5𝐴 𝑄
5𝐶 -𝑄

5𝐴 38 11 26 3 8

Wrong𝑄
5𝐷 {(𝑑1) (∃𝑏1, 𝑥1, 𝑝1 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏1) ∧ 𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥1, 𝑏1, 𝑝1)) ∧ ¬∃𝑥2 (∃𝑏2, 𝑝2 (𝐿𝑖𝑘𝑒𝑠 (𝑑1, 𝑏2) ∧

𝑆𝑒𝑟𝑣𝑒𝑠 (𝑥2, 𝑏2, 𝑝2)) ∧ ¬∃𝑡1𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝑠 (𝑑1, 𝑥2, 𝑡1))) }
17 8 12 2 5

𝑄
5𝐴-𝑄

5𝐷 𝑄
5𝐴-𝑄

5𝐷 30 10 21 4 10

𝑄
5𝐷 -𝑄

5𝐴 𝑄
5𝐷 -𝑄

5𝐴 30 10 21 3 8

Table 4: Beers queries used in the experiments and their complexity measures.



Query description DRC Query Size Height # ∀+∃ # Or # Or Below ∀ + # ∀
Correct𝑄

4𝐴 {(𝑜1, 𝑜2) (∃𝑜3, 𝑜6 (𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, 𝑜3, ∗, ∗, 𝑜6, 𝑜2, ∗, ∗, ∗) ∧ (19930701 ≤ 𝑜6 ∧ 𝑜6 < 19931001)) ∧
∃𝑙2, 𝑙3, 𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, 𝑙2, 𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙12 < 𝑙13)) }

17 9 12 0 0

Wrong𝑄
4𝐵 {(𝑜1, 𝑜2) (∃𝑜3, 𝑜6 (𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, 𝑜3, ∗, ∗, 𝑜6, 𝑜2, ∗, ∗, ∗) ∧ (19930701 ≤ 𝑜6 ∧ 𝑜6 < 19931001)) ∧

∃𝑙2, 𝑙3, 𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, 𝑙2, 𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙13 < 𝑙12)) }
17 9 12 0 0

𝑄
4𝐴-𝑄

4𝐵 𝑄
4𝐴-𝑄

4𝐵 33 10 23 4 8

𝑄
4𝐵 -𝑄

4𝐴 𝑄
4𝐵 -𝑄

4𝐴 33 10 23 4 8

Wrong𝑄
4𝐶 {(𝑜1, 𝑜2) (∃𝑜3, 𝑜6 (𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, 𝑜3, ∗, ∗, 𝑜6, 𝑜2, ∗, ∗, ∗) ∧ (19930701 ≤ 𝑜6 ∧ 𝑜6 < 19931001)) ∧

¬∃𝑙2, 𝑙3, 𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, 𝑙2, 𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙12 < 𝑙13)) }
17 9 12 1 5

𝑄
4𝐴-𝑄

4𝐶 𝑄
4𝐴-𝑄

4𝐶 33 10 23 3 3

𝑄
4𝐶 -𝑄

4𝐴 𝑄
4𝐶 -𝑄

4𝐴 33 10 23 5 13

Correct𝑄
16𝐴 {(𝑝4, 𝑝5, 𝑝6, 𝑝𝑠2) | ∃𝑝1 (∃𝑝2 ( (𝑝𝑎𝑟𝑡 (𝑝1, 𝑝2, ∗, 𝑝4, 𝑝5, 𝑝6, ∗, ∗, ∗) ∧ (49 == 𝑝6 ∨ 14 == 𝑝6)) ∧

(“𝐵𝑟𝑎𝑛𝑑#45” ! = 𝑝4 ∧ 𝑝5 𝐿𝐼𝐾𝐸 “𝑀𝐸𝐷𝐼𝑈𝑀 𝑃𝑂𝐿𝐼𝑆𝐻𝐸𝐷%”)) ∧ (𝑝𝑎𝑟𝑡𝑠𝑢𝑝𝑝 (𝑝1, 𝑝𝑠2, ∗, ∗, ∗) ∧
¬∃𝑠7 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑝𝑠2, ∗, ∗, ∗, ∗, ∗, 𝑠7) ∧ 𝑠7 𝐿𝐼𝐾𝐸 “%𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛, ”))) }

22 11 14 2 2

Wrong𝑄
16𝐵 {(𝑝4, 𝑝5, 𝑝6, 𝑝𝑠2) | ∃𝑝1 (∃𝑝2 ( (𝑝𝑎𝑟𝑡 (𝑝1, 𝑝2, ∗, 𝑝4, 𝑝5, 𝑝6, ∗, ∗, ∗) ∧ (49 == 𝑝6 ∨ 14 == 𝑝6)) ∧

(“𝐵𝑟𝑎𝑛𝑑#45” ! = 𝑝4 ∧ 𝑝5 𝐿𝐼𝐾𝐸 “𝑀𝐸𝐷𝐼𝑈𝑀 𝑃𝑂𝐿𝐼𝑆𝐻𝐸𝐷%”)) ∧ (𝑝𝑎𝑟𝑡𝑠𝑢𝑝𝑝 (𝑝1, 𝑝𝑠2, ∗, ∗, ∗) ∧
¬∃𝑠7 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑝𝑠2, ∗, ∗, ∗, ∗, ∗, 𝑠7) ∧ 𝑠7 𝐿𝐼𝐾𝐸 “%𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛”))) }

22 11 14 2 2

𝑄
16𝐴-𝑄

16𝐵 𝑄
16𝐴-𝑄

16𝐵 41 12 25 7 6

𝑄
16𝐵 -𝑄

16𝐴 𝑄
16𝐵 -𝑄

16𝐴 41 12 25 7 6

Wrong𝑄
16𝐶 {(𝑝4, 𝑝5, 𝑝6, 𝑝𝑠2) | ∃𝑝1 (∃𝑝2 ( (𝑝𝑎𝑟𝑡 (𝑝1, 𝑝2, ∗, 𝑝4, 𝑝5, 𝑝6, ∗, ∗, ∗) ∧ (49 == 𝑝6 ∨ 14 == 𝑝6)) ∧

(“𝐵𝑟𝑎𝑛𝑑#45” ! = 𝑝4 ∧ 𝑝5 𝐿𝐼𝐾𝐸 “𝑀𝐸𝐷𝐼𝑈𝑀 𝑃𝑂𝐿𝐼𝑆𝐻𝐸𝐷%”)) ∧ (𝑝𝑎𝑟𝑡𝑠𝑢𝑝𝑝 (𝑝1, 𝑝𝑠2, ∗, ∗, ∗) ∧
∃𝑠7 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑝𝑠2, ∗, ∗, ∗, ∗, ∗, 𝑠7) ∧ ¬𝑠7 𝐿𝐼𝐾𝐸 “%𝑐𝑜𝑚𝑝𝑙𝑎𝑖𝑛, ”))) }

22 11 14 1 0

𝑄
16𝐴-𝑄

16𝐶 𝑄
16𝐴-𝑄

16𝐶 41 12 25 8 8

𝑄
16𝐶 -𝑄

16𝐴 𝑄
16𝐶 -𝑄

16𝐴 41 12 25 6 4

Correct𝑄
19𝐴

{(𝑙6, 𝑙7) | ∃𝑙1, 𝑙2, 𝑙4, 𝑙5, 𝑙15, 𝑝4, 𝑝6, 𝑝7
( (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑙1, 𝑙2, ∗, 𝑙4, 𝑙5, 𝑙6, 𝑙7, ∗, ∗, ∗, ∗, ∗, ∗, “𝐷𝐸𝐿𝐼𝑉𝐸𝑅 𝐼𝑁 𝑃𝐸𝑅𝑆𝑂𝑁 ”, “𝐴𝐼𝑅”, ∗)∧
𝑝𝑎𝑟𝑡 (𝑙2, ∗, ∗, 𝑝4, ∗, 𝑝6, 𝑝7, ∗, ∗)) ∧ ( ( (“𝐵𝑟𝑎𝑛𝑑#12” == 𝑝4 ∧ 𝑝7 𝐿𝐼𝐾𝐸 “𝑆𝑀%”) ∧ (𝑙5 <= 11 ∧ 𝑝6 <= 5))
∨ ( (“𝐵𝑟𝑎𝑛𝑑#23” == 𝑝4 ∧ 𝑝7 𝐿𝐼𝐾𝐸 “𝑀𝐸𝐷%”) ∧ ( (10 ≤ 𝑙5 ∧ 𝑙5 <= 20) ∧ 𝑝6 <= 10)))) }

31 16 20 1 0

Wrong𝑄
19𝐵

{(𝑙6, 𝑙7) | ∃𝑙1, 𝑙2, 𝑙4, 𝑙5, 𝑙15, 𝑝4, 𝑝6, 𝑝7
( (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑙1, 𝑙2, ∗, 𝑙4, 𝑙5, 𝑙6, 𝑙7, ∗, ∗, ∗, ∗, ∗, ∗, “𝐷𝐸𝐿𝐼𝑉𝐸𝑅 𝐼𝑁 𝑃𝐸𝑅𝑆𝑂𝑁 ”, “𝐴𝐼𝑅”, ∗)∧
𝑝𝑎𝑟𝑡 (𝑙2, ∗, ∗, 𝑝4, ∗, 𝑝6, 𝑝7, ∗, ∗)) ∧ ( ( (“𝐵𝑟𝑎𝑛𝑑#12” == 𝑝4 ∧ 𝑝7 𝐿𝐼𝐾𝐸 “𝑆𝑀%”) ∧ (𝑙5 <= 10 ∧ 𝑝6 <= 5))
∨ ( (“𝐵𝑟𝑎𝑛𝑑#234” == 𝑝4 ∧ 𝑝7 𝐿𝐼𝐾𝐸 “𝑀𝐸𝐷%”) ∧ (𝑙5 <= 20 ∧ 𝑝6 <= 10)))) }

29 15 19 1 0

𝑄
19𝐴-𝑄

19𝐵 𝑄
19𝐴-𝑄

19𝐵 59 17 38 9 9

𝑄
19𝐵 -𝑄

19𝐴 𝑄
19𝐵 -𝑄

19𝐴 59 17 38 10 9

Wrong𝑄
19𝐶

{(𝑙6, 𝑙7) | ∃𝑙1, 𝑙2, 𝑙4, 𝑙5, 𝑙15, 𝑝4, 𝑝6, 𝑝7
( (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑙1, 𝑙2, ∗, 𝑙4, 𝑙5, 𝑙6, 𝑙7, ∗, ∗, ∗, ∗, ∗, ∗, “𝐷𝐸𝐿𝐼𝑉𝐸𝑅 𝐼𝑁 𝑃𝐸𝑅𝑆𝑂𝑁 ”, “𝐴𝐼𝑅”, ∗)∧
𝑝𝑎𝑟𝑡 (𝑙2, ∗, ∗, 𝑝4, ∗, 𝑝6, 𝑝7, ∗, ∗)) ∧ ( (“𝐵𝑟𝑎𝑛𝑑#12” == 𝑝4 ∧ 𝑝7 𝐿𝐼𝐾𝐸 “𝑆𝑀%”)∧
(𝑙5 <= 11 ∧ 𝑝6 <= 5))) }

21 14 15 0 0

𝑄
19𝐴-𝑄

19𝐶 𝑄
19𝐴-𝑄

19𝐶 51 17 34 6 9

𝑄
19𝐶 -𝑄

19𝐴 𝑄
19𝐶 -𝑄

19𝐴 51 17 34 9 9

Correct𝑄
21𝐴

{(𝑠1, 𝑠2, 𝑜1) ( (∃𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑠1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙12 < 𝑙13)∧
∃𝑙𝑙3, 𝑙𝑙12, 𝑙𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑙𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙𝑙12, 𝑙𝑙13, ∗, ∗, ∗) ∧ 𝑙𝑙3 ! = 𝑠1))∧
( (𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, ∗, “𝐹 ”, ∗, ∗, ∗, ∗, ∗, ∗) ∧ ∃𝑠4 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑠1, 𝑠2, ∗, 𝑠4, ∗, ∗, ∗)∧
𝑛𝑎𝑡𝑖𝑜𝑛 (𝑠4, “𝑆𝐴𝑈𝐷𝐼 𝐴𝑅𝐴𝐵𝐼𝐴”, ∗, ∗))) ∧ ¬∃𝑙𝑙𝑙3, 𝑙𝑙𝑙12, 𝑙𝑙𝑙13
(𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑙𝑙𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙𝑙𝑙12, 𝑙𝑙𝑙13, ∗, ∗, ∗) ∧ (𝑙𝑙𝑙12 < 𝑙𝑙𝑙13 ∧ 𝑙𝑙𝑙3 ! = 𝑠1)))) }

31 11 21 2 4

Wrong𝑄
21𝐵

{(𝑠1, 𝑠2, 𝑜1) ( (∃𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑠1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙12 < 𝑙13)∧
(𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, ∗, “𝐹 ”, ∗, ∗, ∗, ∗, ∗, ∗) ∧ ∃𝑠4 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑠1, 𝑠2, ∗, 𝑠4, ∗, ∗, ∗)∧
𝑛𝑎𝑡𝑖𝑜𝑛 (𝑠4, “𝑆𝐴𝑈𝐷𝐼 𝐴𝑅𝐴𝐵𝐼𝐴”, ∗, ∗)))) ∧ ∃𝑙𝑙𝑙3, 𝑙𝑙𝑙12, 𝑙𝑙𝑙13
(𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑙𝑙𝑙3, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙𝑙𝑙12, 𝑙𝑙𝑙13, ∗, ∗, ∗) ∧ (𝑙𝑙𝑙13 ≤ 𝑙𝑙𝑙12 ∧ 𝑙𝑙𝑙3 ! = 𝑠1))) }

24 10 16 0 0

𝑄
21𝐴-𝑄

21𝐵 𝑄
21𝐴-𝑄

21𝐵 53 12 35 9 13

𝑄
21𝐵 -𝑄

21𝐴 𝑄
21𝐵 -𝑄

21𝐴 53 12 35 7 9

Wrong𝑄
21𝐶 {(𝑠1, 𝑠2, 𝑜1) (∃𝑙12, 𝑙13 (𝑙𝑖𝑛𝑒𝑖𝑡𝑒𝑚 (𝑜1, ∗, 𝑠1, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, 𝑙12, 𝑙13, ∗, ∗, ∗) ∧ 𝑙12 <

𝑙13) ∧ (∃𝑜3𝑜𝑟𝑑𝑒𝑟𝑠 (𝑜1, ∗, 𝑜3, ∗, ∗, ∗, ∗, ∗, ∗) ∧ ∃𝑠4 (𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 (𝑠1, 𝑠2, ∗, 𝑠4, ∗, ∗, ∗) ∧
𝑛𝑎𝑡𝑖𝑜𝑛 (𝑠4, “𝑆𝐴𝑈𝐷𝐼 𝐴𝑅𝐴𝐵𝐼𝐴”, ∗, ∗)))) }

16 8 11 0 0

𝑄
21𝐴-𝑄

21𝐶 𝑄
21𝐴-𝑄

21𝐶 45 12 30 6 10

𝑄
21𝐶 -𝑄

21𝐴 𝑄
21𝐶 -𝑄

21𝐴 45 12 30 7 9

Table 5: TPC-H queries used in the experiments and their complexity measures. * denotes “don’t care”.
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