
Explaining WrongQueries Using Small Examples
Zhengjie Miao, Sudeepa Roy, and Jun Yang

Duke University

{zjmiao,sudeepa,junyang}@cs.duke.edu

ABSTRACT

For testing the correctness of SQL queries, e.g., evaluating

student submissions in a database course, a standard practice

is to execute the query in question on some test database

instance and compare its result with that of the correct query.

Given two queriesQ1 andQ2, we say that a database instance

D is a counterexample (for Q1 and Q2) if Q1(D) differs from
Q2(D); such a counterexample can serve as an explanation

of whyQ1 andQ2 are not equivalent. While the test database

instance may serve as a counterexample, it may be too large

or complex to read and understand where the inequivalence

comes from. Therefore, in this paper, given a known coun-

terexample D for Q1 and Q2, we aim to find the smallest

counterexample D ′ ⊆ D where Q1(D
′) , Q2(D

′). The prob-

lem in general is NP-hard. We give a suite of algorithms for

finding the smallest counterexample for different classes of

queries, some more tractable than others. We also present

an efficient provenance-based algorithm for SPJUD queries

that uses a constraint solver, and extend it to more com-

plex queries with aggregation, group-by, and nested queries.

We perform extensive experiments indicating the effective-

ness and scalability of our solution on student queries from

an undergraduate database course and on queries from the

TPC-H benchmark. We also report a user study from the

course where we deployed our tool to help students with an

assignment on relational algebra.

1 INTRODUCTION

Correctness of database queries is often validated by eval-

uating the queries with respect to a reference query and a

reference database instance for testing. A primary applica-

tion is in teaching students how to write SQL queries in

database courses in academic institutions and evaluating

their solutions. Typically, there is a test database instance

D, and a correct query Q1. The correctness of the query Q2

submitted by a student is validated by checking whether

Q1(D) = Q2(D). Assuming that Q2 is at least syntactically

correct and its output schema is compatible with that of

Q2 (which can be easily verified), if Q2 does not solve the

intended problem, then there will be at least one tuple in

Q1(D) and not in Q2(D), or in Q2(D) but not in Q1(D). An-
other application scenario is when people rewrite complex

SQL queries to obtain better performance. One approach

for checking the correctness of complex rewritten queries

is regression testing: execute the rewritten query Q2 on test

instances D to make sure that Q2 returns the same results as

the original queryQ1. Finding an answer tuple differentiating

two queries and providing an explanation for its existence

helps students or developers understand the error and fix

their queries.

In both applications above, if the test database D is large—

either because it is a large real data set or it is synthesized

to be large enough to test scalability or ensure coverage of

numerous corner cases—it would take much effort to under-

stand where the inequivalence of two queries came from.

Suppose a database course in a university uses the DBLP

database [26] in an assignment on SQL or relational algebra

(RA). The DBLP database has more than 5 million entries,

and giving this entire database (or the outputs) to students

as a counterexample to their query is not much effective.

In practice, the mistakes in most of the queries can be ex-

plained with only a small number of tuples, which is much

more useful as a counterexample for debugging.

Of course, one could generate a completely different coun-

terexampleD ′
altogether, but using the test database instance

D to help generate a counterexample has some distinct advan-

tages. First, it helps to preserve the same context for users by

using the same data values and relationships. Second, know-

ing that the original instance D is already a counterexample

can help create the counterexample D ′
more efficiently. This

motivates the problem we study in this paper: given a ref-

erence database D, a reference query Q1, and a test query Q2

such that Q1(D) , Q2(D), find a counterexample as a subin-

stance D ′ ⊆ D such that Q1(D
′) , Q2(D

′) and the size of D ′

is minimized. We illustrate the setting with an example.

Example 1. Consider the following two relation schema

storing information about students and course registrations in

a university: Registration(name, course, dept, grade) and
Student(name, major). In a database course, suppose the in-

structor asked the students to write a SQL query to find students

who registered for exactly one Computer Science (CS) course.

The test instances S,R of these two tables are given in Figure 1.

The following query Q1 solves this problem correctly:

Q1 : SELECT s.name ,s.major

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = 'CS'

EXCEPT

SELECT s.name ,s.major

FROM Student s, Registration r1,

name major
Mary CS t1
John ECON t2
Jesse CS t3

(a) Table Student S

name course dept grade
Mary 216 CS 100 t4
Mary 230 CS 75 t5
Mary 208D ECON 95 t6
John 316 CS 90 t7
John 208D ECON 88 t8
Jesse 216 CS 95 t9
Jesse 316 CS 90 t10
Jesse 330 CS 85 t11

(b) Table Registration R

Figure 1: Toy instances of tables in Example 1. Identi-

fiers are shown for all tuples.

name major
John ECON r1
(a) Result of Q1

name major
Mary CS r2
John ECON r3
Jesse CS r4
(b) Result of Q2

Figure 2: Results of Q1,Q2 in Example 1

Registration r2

WHERE s.name = r1.name AND s.name =

r2.name AND r1.course <> r2.course AND

r1.dept = 'CS' AND r2.dept = 'CS'

However, one student wroteQ2, which actually finds students

who registered for one or more CS courses.

Q2 : SELECT s.name ,s.major

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = 'CS'

The results of queries Q1 and Q2 are given in Figure 2. The

tuples r2 = (Mary, CS) and r3 = (Jesse, CS) are in the output
of Q2 but not in the output of Q1. To convince the student that

his query is wrong, the instructor can provide the instances S,R
as a counter example comprising 11 tuples. However, a smaller

and better counterexample can simply contain three tuples (e.g.,

t1, t4, t5) to illustrate the inequivalence of Q1,Q2. The benefit

will be much larger if we consider a real enrollment database

from a university, whereas the size of the counterexample would

remain the same.

Prior work in the database community mainly focused

on the theoretical study of decidability [13, 29] or generat-

ing a comprehensive set of test databases to “kill” as many

erroneous queries as possible [11], but does not pay much

attention to explaining why two queries are inequivalent.

There are recent systems that aim to generate counterexam-

ples for SQL queries. Cosette developed by Chu et al.[12]

used formal methods that encodes SQL queries into logic

formulas to generate a counterexample that proves two SQL

queries are inequivalent. It generates counterexamples iter-

atively, so it must return the smallest one. XData by Chan-

dra et al.[11] generates test data using mutation techniques.

However, counterexamples generated by such systems can

lead to arbitrary values, which may not be meaningful to

the user. Our approach instead ensures that the user sees

familiar values and relationships already present in the test

database instances.

Our contributions. We make the following contribu-

tions in this paper.

• We formally define the smallest counterexample prob-

lem, and connect it to data provenance with the defini-

tion of the smallest witness problem (Section 2).

• We give complexity results (NP-hardness proofs and

poly-time algorithms) in terms of both data and com-

bined complexity for different subclasses of SPJUDA

queries (Section 3).

• We give practical algorithms for SPJUD queries using

SAT and SMT solvers, and discuss a suite of optimiza-

tions to improve the efficiency (Section 4).

• For aggregate queries, we illustrate the new challenges,

and propose new approaches to address these chal-

lenges, which includes applying provenance for aggre-

gate queries [2], adapting the problem definition by

parameterizing the queries, and rewriting the aggre-

gate queries to reduce the number of tuples involved

in the constraints to the SMT solver (Section 5).

• We describe our implementation of the end-to-end

RATest system, which has been deployed in an under-

graduate course (Section 6).

• We give extensive experimental results in Section 7

to show how our approach can scale to large datasets

(100K tuples for queries from the course and scale-1

for TPC-H queries). Also, we demonstrate that our

optimizations reduce the size of the counterexample.

• We provide a large, thorough user study from the un-

dergraduate database course, where we let students

use RATest to debug their RA queries in a homework.

Quantitative analysis of usage statistics and homework

scores shows that use of RATest improved student

performance; anonymous survey of the students also

indicates that they found RATest helpful to their learn-

ing (Section 8).

2 PRELIMINARIES

We consider the class of Select (S)-Project (P)-Join (J)-Union(U)-

Difference(D)-Aggregate(A) queries expressed as relational

algebra (RA) expressions extendedwith aggregates. However,

we will use RA form and SQL form of queries interchange-

ably. A subset of these operators using abbreviations will

denote the corresponding subclass of such queries; e.g., PJ

queries will denote queries involving only projection and

join operations.

For a database instance D (involving one or more rela-

tional tables) and a query Q , Q(D) will denote the output of
Q on D. Let Γ denote a set of integrity constraints on the

schema of the database instance D. We consider the follow-

ing standard integrity constraints: keys, foreign keys, not

null, and functional dependencies. If D satisfies Γ, we write
D |= Γ. We use |D | to denote the total number of tuples in D.

2

We will use unique identifiers to refer to the tuples in the

database and query answers. In our example tables, they are

written in the right-most column (see Figures 1 and 2), e.g.,

in Figure 1, t1 refers to the tuple Student(Mary,CS).

2.1 Smallest Counterexample Problem

Consider two queries Q1 and Q2 such that Q1(D) , Q2(D)
on a database instance D such that D |= Γ for a given set of

integrity constraints Γ. In other words, D explains why Q1

andQ2 are inequivalent. Based on D, we want to find a small

counterexample D ′ ⊆ D that also explains the inequivalence

of Q1 and Q2.

Definition 1 (Counterexample andThe Smallest Coun-

terexample Problem). Given a database instance D, a set
of integrity constraints Γ s.t. D |= Γ, two queries Q1, Q2 where

Q1(D) , Q2(D), a counterexample is a subinstance D ′ ⊆ D
s.t. D ′ |= Γ and Q1(D

′) , Q2(D
′). In particular, D is a trivial

counterexample.

The goal of the smallest counterexample problem

(SCP(D,Q1,Q2)) is to find a counterexample D ′ ⊆ D such

that the total number of tuples in D ′
is minimized (i.e., for all

counterexamples D ′′ ⊆ D, |D ′′ | ≥ |D ′ |).

In the above definition, we assume that the results of the

two queries are union-compatible (i.e.,Q1(D),Q2(D) have the
same schema), which is easy to check syntactically (other-

wise the difference in their schema serves as the reason of

their inequivalence).

Note that keys, functional dependencies, and not null con-

straints are closed under subinstances, i.e., for such con-

straints Γ, if D |= Γ, then ∀D ′ ⊆ D, D ′ |= Γ. Therefore, for
such constraints, no additional consideration is needed. This

is not true for referential constraints or foreign keys, which

we explicitly consider in our algorithms. From now on, where

it is clear from the context, we will implicitly assume that

the D ′ ⊆ D discussed as counterexamples satisfy the given

constraints Γ.

Example 2. In Example 1 and Figure 1, the given test in-

stances S and R of input relations Student and Registration
already form a counterexample for Q1 and Q2. However, some

subinstances of S,R are also counterexamples. Among these

subinstances, S ′ = {t1}, R
′ = {t4, t5}; or S

′′ = {t3}, R
′′ =

{t9, t10} are two smallest counterexamples (there are two other

smallest counter examples varying the two courses of Jesse),

i.e. there are no counterexamples with less than 3 tuples.

Our goal is to explain the query inequivalence to users by

showing the smallest counterexample over which the two

queries return different results. Even in our running example

with a toy database instance, this reduced the number of

tuples from 11 to only 3, whereas the benefit is likely to be

muchmore for test database instances in practice as observed

in our experiments. The brute-force method to find the small-

est counterexample is to enumerate all subinstances of D,
and search for the smallest subinstance D ′

where Q1(D
′)

and Q2(D
′) are different. However, enumerating all possible

subinstances is inefficient and it does not utilize the informa-

tion that D is already a counterexample. Therefore, to solve

this problem more efficiently, we relate this problem to the

concepts of witnesses and data provenance as discussed in

the next two subsections.

2.2 Smallest Witness Problem

Buneman et al. [10] proposed the concept of witnesses to

capture why-provenance of a query answer. Intuitively, a

witness is a collection of input tuples that provides a proof

for a given output tuple. Formally, given a database instance

D, a queryQ , and a tuple t ∈ Q(D), a witness for t w.r.t.Q and

D is a subinstance D ′ ⊂ D where t ∈ Q(D ′). For instance, in

Example 1, {t1, t4}, {t1, t5}, and {t1, t4, t5} are three witnesses
of the output tuple r2 w.r.t. Q2 and D. We use W(Q,D, t) to
denote the set of all witnesses for t ∈ Q(D) w.r.t. Q and D.
In the smallest counterexample problem SCP(D,Q1,Q2),

sinceQ1(D) , Q2(D), there must exist a tuple t such that t ∈
Q1(D)\Q2(D), or, t ∈ Q2(D)\Q1(D). SinceQ1,Q2 are assumed

to be union-compatible, we can construct two queries Q
′

1
=

Q1−Q2 andQ
′

2
= Q2−Q1. Therefore, for any counterexample

D ′ ⊆ D forQ1 andQ2, ∃t such that t ∈ Q
′

1
(D ′), or, t ∈ Q

′

2
(D ′).

Given such an answer tuple t differentiating Q1,Q2, we say

that D ′
witnesses the tuple t in the result of Q

′

1
or Q

′

2
.

A witness may contain many tuples and is sensitive to

the query structure. Buneman et al. [10] defined minimal

witness as a minimal element ofW(Q,D, t), i.e., for a mini-

mal witnessw ∈ W(Q,D, t), there exist no other witnesses

w ′ ∈ W(Q,D, t) such that w ′ ⊂ w . In Example 1, {t1, t4}
and {t1, t5} are minimal witnesses of the output tuple r2 w.r.t
Q2 and D, but {t1, t4, t5} is not. In particular, a witness with

the smallest cardinality must be a minimal witness.

Definition 2 (Smallest Witness Problem). Given a

database instance D, two union-compatible queries Q1 and

Q2 s.t. Q1(D) , Q2(D), and a tuple t s.t. t ∈ Q1(D) \Q2(D) or
t ∈ Q2(D) \ Q1(D), the goal of the smallest witness problem

(SWP(D,Q1,Q2, t)) is to find a witnessw ∈ W(Q1−Q2,D, t)∪
W(Q2 −Q1,D, t) such that the total number of tuples inw is

minimized.

We can reduce the smallest counterexample problem

SCP(D,Q1,Q2) into the smallest witness problem SWP(D,Q1,
Q2, t) by enumerating all possible output tuples in the dif-

ference of Q1(D) and Q2(D), solving SWP(D,Q1,Q2, t), and
finding the globally minimum witness across all such t-s.

SCP(D,Q1,Q2) = min

t ∈(Q1(D)\Q2(D))∪(Q2(D)\Q1(D))
SWP(D,Q1,Q2, t)

3

From now on, without loss of generality, we will assume

that in the smallest counterexample problem SCP(D,Q1,Q2),

there exists a tuple t ∈ Q1(D) but t < Q2(D). In the rest of the

paper, we will mainly focus on the smallest witness problem

SWP(D,Q1,Q2, t) for such a tuple, primarily due to the fact

that it provides more efficient solutions and allows optimiza-

tions compared to SCP. We further discuss the connection

between SCP and SWP in Section 4 and in Section 7.

2.3 Boolean How-Provenance

Buneman et al.[10] formally introduced the why-provenance

model that captures witnesses for a tuple t in the result of

a query Q on a database instance D. However, it lacks an
efficient method to compute the smallest witness from why-

provenance. In order to compute the smallest witness effi-

ciently for general SPJUD queries, we use the concept of

how-provenance or lineage [1, 19]. How-provenance encodes

how a given output tuple is derived from the given input

tuples using a Boolean expression, and its first use can be

traced back to Imilienski and Lipski [21] who used it to de-

scribe incomplete databases or c-tables. The computation

of how-provenance of an output tuple t ∈ Q(D), denoted
by PrvQ (D)(t) or Prv(t) when clear from the context, is well

known and intuitive: tuples in the given input relations are

annotated with unique identifiers (as shown in the right-

most columns in Figure 1). As the queryQ executes, for joint

usages of sub-expressions (joins), their annotations are com-

bined with conjunction (∧ or ·), and for alternative usages

of sub-expressions (projections or unions), the annotations

are combined with disjunction (∨ or +). For simplicity, we

use + for disjunction, and omit symbols for conjunction. For

instance, in Example 1, in Q2(D),

PrvQ2(D)(r2) = t1t4 + t1t5 = t1(t4 + t5) = ϕ1(say) (1)

For set difference operation, consider R = R1 − R2, where

all tuples in R1,R2 are annotated with how-provenance. If a

tuple t appears in R, it must appear in R1. Suppose PrvR1
(t) =

ϕ. If t does not appear in R2, PrvR (t) = ϕ. If t does appear

in R2 with PrvR2
(t) = ψ , then PrvR (t) = ϕ · ψ , where ψ =

¬ψ denotes the negation of the Boolean expressionψ . This
implies t appears in the final results of R if t appears in R1

but not in R2.

Example 2.1. In Example 1, consider the following RA

expressions for Q2 and Q1, using abbreviations S and R for
Students and Registration, where Z denotes natural join

(abusing the form of RA for simplicity).

Q2 = πname,majorσdept=′CS′(S Z R) (2)

Suppose Q3 = πname,majorση(S Z R r1 Z R r2), where η de-

notes the selection condition: r1.dept =′ CS ′ ∧ r2.dept =′

CS ′ ∧ r1.course! = r2.course . Then Q1 = Q2 −Q3. Consider

the result tuple r2 = (Mary,CS), which is in (Q2 − Q1)(D)
(Figure 2). The provenance of r2 = (Mary,CS) in Q2(D) is
given in Equation (1). It does not appear in Q1(D) since it
appears in both Q2,Q3 in (2). For Q3, PrvQ3(D)(r2) = t1t4t5 =

ϕ2(say). Hence, PrvQ1(D)(r2) = ϕ1 · ϕ2, and Prv(Q2−Q1)(D)(r2)

= ϕ1 · [ϕ1 · ϕ2] = ϕ1 · [ϕ1 +ϕ2] = ϕ1 ·ϕ2 = (t1(t4 + t5)) · (t1t4t5)
= t1t4t5. In other words, the tuple (Mary,CS) can distinguish

the queries Q1,Q2 in a small witness S ′ = {t1},R
′ = {t4, t5},

which solves both SWP and SCP problems.

For the above example, the smallest witness or the smallest

counterexample could be found by inspection, since Q1,Q2

are similar. For arbitrary and more complex queries, how-

provenance gives a systematic approach to find a small wit-

ness as we will discuss in the following two sections.

Aggregates. In the next two sections, we discuss algo-

rithms and complexity results for SPJUD queries. As we

discuss in Section 5, aggregate queries entail new challenges,

where we adapt the definitions of optimization problems

accordingly and discuss solutions.

3 COMPLEXITY FOR SPJUD QUERIES

Table 1 summarizes the complexity of the smallest witness

problem (SWP) for any subclass of SPJUD queries. In terms of

complexity, we consider data complexity (fixed query size),

query complexity (fixed data size), and combined complexity

(in terms of both data and query size) [37]. Thus polynomial

combined complexity indicates polynomial data complexity.

Query Class

of Q1,Q2

Data

Complexity

Combined

Complexity

SJ P (Thm. 1) P (Thm. 1)

SPU P (Thm. 2) P (Thm. 2)

PJ P (Thm. 6) NP-hard (Thm. 3)

JU P (Thm. 6) NP-hard (Thm. 4)

JU
∗

P (Thm. 5) P (Thm. 5)

SPJUD
∗

P (Thm. 7) NP-hard if falls

into class PJ or JU

PJD NP-hard (Thm. 8) NP-hard (Thm. 8)

Table 1: Complexity dichotomy of finding smallest

witness for a result tuple w.r.t. the difference of two

queries Q1 − Q2. The class JU
∗
has the restriction that

all unions appear after all joins. The class SPJUD
∗
is de-

fined as:Q → q+ |Q −Q , where q+ is a terminal that rep-

resents SPJU queries. Proofs are given in Appendix A.

For queries involving PJ, in general even the query evalu-

ation problem is NP-hard in query complexity. However, we

construct acyclic queries that can be evaluated in poly-time

in combined complexity. It’s the same for queries involving

JU, however, the problem is in poly-time for the subclass JU
∗
,

because we can directly look into the join-only parts of a

4

JU
∗
query. For general SPJU queries, the problem has poly-

time data complexity, and thus we can provide a poly-time

algorithm for SPJUD
∗
queries in data complexity.

What is noteworthy is that for the class of queries involv-

ing projection, join, and difference, it is already NP-hard in

data complexity to find the smallest witness for a result tuple;

and the result holds even when the queries are of bounded

sizes and the database instance only contains two relations.

While in the complexity results, we assume both Q1,Q2

belong to the same query class, if t ∈ Q1(D) \Q2(D), for all
monotone cases the exact class ofQ2 does not matter as long

as it is monotone.

4 A CONSTRAINT-BASED GENERAL

SOLUTION FOR SPJUD QUERIES

In the previous section, we showed that for a number of query

classes, the smallest witness problem is poly-time solvable

in data complexity. However, the problem is still NP-hard in

general, even when the queries are of bounded size; further,

the poly-time algorithms we discussed are not efficient for

practical purposes. To address these challenges, we intro-

duce a constraint-based approach to the smallest witness

problem. We map the problem into themin-ones satisfiability

problem [25] by tracking the Boolean provenance of output

tuples. The min-ones satisfiability problem is an extension

of the classic Satisfiability (SAT) problem: given a Boolean

formula ϕ, it checks whether ϕ is satisfiable with at most k
variables set to true. This problem can be solved by either us-

ing a SAT solver (e.g., MiniSAT[36], and CaDiCaL[8]), or an

SMT Solver (e.g., CVC4[5]and Z3[15]). Satisfiability Modulo

Theories (SMT) is a form of constraint satisfaction problem. It

refers to the problem of determining whether a first-order

formula is satisfiable w.r.t. other background first-order for-

mulas, and is a generalization of the SAT problem[7]). SAT

and SMT problems are known to be NP-hard with respect

to the number of clauses, constraints, and undetermined

variables. However, there is a variety of solvers that work

very well in practice for different real world applications,

and with these solvers we can find a small solution to a SWP
instance. The rest of this section will describe how to en-

code the how-provenance of an output tuple, and then use

a state-of-the-art solver to find the smallest witness for the

output tuple. The implementation details will be discussed

in Section 6.

4.1 Passing How-Provenance to a Solver

As discussed in Section 2.3, the how-provenance Prv(t) is
true⇔ tuple t is in the query result. Since Prv(t) is composed

of a combination of Boolean variables annotating tuples in

the input relations, a Boolean variable is true⇔ the corre-

sponding tuple is present in the input relation in the witness.

Then an instance of the smallest witness problem is mapped

to an instance of the min-ones satisfiability problem: find a

satisfying model to Prv(t) with least number of variables set

to true, and the variables set to true in the satisfying model

indicate tuples in the smallest witness. The pseudocode of

the algorithm to solve SCP and SWP is given in Algorithm 1.

Example 3 illustrates how we can get the smallest witness

using a SAT solver. Since the solver will return an arbitrary

satisfying model, to get the minimum model we need to ask

the solver to return a different model every time we rerun

it (line 6). We set a maximum number of runs to limit the

running time, and the algorithm stops when there is no more

satisfying models or it has reached the maximum number of

runs. It may not find the minimum model when it stops, but

it is likely to find one that is small if given enough time.

Example 3 (How-provenance and SAT Solver). Con-

sider Example 1.

(Mary, CS) and (Jesse, CS) is in the result of Q2 but not

in the result of Q1, and the how-provenance for them w.r.t.

Q2 − Q1 and D can be computed based on these results. E.g.,

Prv(Q2−Q1)(D)(Jesse,CS) = PrvQ2(D)(Jesse,CS)∧

¬PrvQ1(D)(Jesse,CS) = (t3(t9 + t10 + t11)) (t3t9 + t3t10 + t3t11)

t3t9t10 + t3t9t11 + t3t10t11 = t3t9t10 + t3t9t11 + t3t10t11. Then
we can get a model {t3 : True, t9 : True, t10 : True, t11 :

True} to Prv(Q2−Q1(D)(Jesse,CS) by passing it to a SAT solver.

We will get any of {t3, t9, t10}, {t3, t9, t11}, and {t3, t10, t11}
as the smallest witness after running the solver for multiple

times (in the first run, it may return a bigger solution like

{t3, t9, t10, t11}).

4.2 Optimizing the Basic Approach

The basic algorithm given in Algorithm 1 has two limitations:

(a) it cannot find the smallest witness until it searches all

possible models that satisfy Prv(t); (b) In order to solve SCP,
it iterates over all tuples in Q1(D) \Q2(D) and calculates the

provenance for each tuple, which leads to large overheads.

Therefore, we propose two optimizations. The first one is to

pick only one tuple t from the query results ofQ1(D) \Q2(D)
(i.e., we only solve SWP), and only compute the provenance of

t by adding an additional selection operator to select tuples

equal to t on top of the query tree of Q1 − Q2. The other

optimization is to treat this problem as an optimization prob-

lem instead of finding different models with a SAT or SMT

solver. However, integer linear programming solvers can

not be applied because transforming how-provenance into

linear constraints can be exponential. To solve this problem,

we use optimizing SMT solvers that are now available with

recent advances in the programming languages and verifi-

cation research community [9, 27]. Given a formula ϕ and

an objective function F , an optimizing SMT Solver finds a

satisfying assignment of ϕ that maximizes or minimizes the

value of F .

5

Algorithm 1 Basic: The SAT-solver-based approach

Smallest-Witness-Basic(Prv(t),∆)

1 ϕ = Prv(t)
2 η∗ = null

3 δ = 0

4 while ϕ is satisfiable and δ < ∆
5 Use a SAT solver to find a model η for ϕ
6 ϕ = ϕ ∧ ¬η
7 if η∗ is null or # true variables in η is less than η∗

8 η∗ = η
9 δ = δ + 1
10 Return a set of tuples Dη∗ = {t ′ | η∗(t ′) is true}

Smallest-Counterexample-Basic(Q1,Q2,D,∆)

1 D∗ = D
2 ∆ is the maximum number of trials.

3 for t ∈ (Q1 −Q2)(D)
4 Prv(t) = the how-provenance of tuple t w.r.t.

(Q1 −Q2)(D).
5 D ′ = Smallest-Witness-Basic(Prv(t),∆)
6 if |D ′ | < |D∗ |

7 D∗ = D ′

8 Return D∗

Algorithm 2 Optσ : The optimized algorithm with selection

pushdown

Smallest-Counterexample-Optimized(Q1,Q2,D)

1 Pick one tuple t in the result of Q1(D) \Q2(D),
2 A1...Ak = the attributes of t .
3 Q ′ = σA1=t .A1,A2=t .A2, ...,Ak=t .Ak (Q1 −Q2)

4 ϕ = the how-provenance of tuple t w.r.t. Q ′(D).
5 obj = the number of true values in ϕ
6 η = OptSMT_Solver(ϕ, obj)
7 Return a set of tuples Dη = {t ′ | η(t ′) is true}

Algorithm 2 describes the solution with these two opti-

mizations. A selection operator on the value of t is added to

Q1 −Q2 (line 2-3). Again, we add Prv(t) as the constraint of
the optimizing SMT solver, set the number of true variables

as the objective function, and get the optimal model (line

4-6). Our SMT formulation includes only Boolean variables,

so we encode the number of true variables by first converting

the variables into 0 or 1 and then summing them up.

The SQL query optimizer is likely to push down the ad-

ditional selection operator to accelerate the computation of

how-provenance. Moreover, since a how-provenance may

involve many tuples, solving it with an optimizer will reduce

the solving time significantly, since the optimizer will return

an answer as soon as it finds a solution, but the naive algo-

rithm requires enumerating all possible models to obtain the

model with least number of variables set to true.

1 (declare-const t1 Bool)

2 ...

3 (declare-const t11 Bool)

4 (define-fun b2i ((x Bool)) Int (ite x 1 0))

5 (assert (and (or t4 t5) (not (and (or (and t1 t4) (and t1

t5)) (not (and t1 (and t4 t5)))))))

6 (minimize (+ (b2i t1) (b2i t2) ... (b2i t11)))

Listing 1: SMT-LIB Input for Example 3

The above listing illustrates how we encode the provenance

and constraints into the SMT-LIB standard format [6] as

the input to a SMT solver to find the satisfying model for

Example 3. In the sample SMT-LIB format input above, first

we defined Boolean variables for each tuple from line 1 to line

4, then at line 4 we defined function b2i to convert Boolean

variables for each tuple into 0 and 1. At line 5 we added

the how-provenance as a constraint. Then with function

b2i we take the sum of 0-1 variables to get the number of

true variables in the model, and set the sum as the objective

function (line 6).

4.3 Handling Database Constraints

Since we output a subinstance of the input database instance

as the witness, database constraints like keys, not null, and

functional dependencies are trivially satisfied if the input

instance is valid. On the other hand, foreign key constraints

can be naturally represented as Boolean formulas like prove-

nance expressions. For instance, in our running example in

Figure 1, the name column in the Registration table may

refer to the name column in the Student table. So, if we want
to keep any tuple in the Registration table, we must also

keep the tuple with the same name value in the Student ta-
ble. This constraint can be expressed in the a ⇒ b form, e.g.,

t1 + t4, t2 + t7, .., etc., corresponding to the constraint that

the tuples in the Registration table cannot exist unless the
tuple it refers to exists in the Student table). Then, for each

tuple that appears in the provenance expression added to

the SAT or SMT solver, we add its foreign key constraint

expression to the solver as a constraint.

5 AGGREGATE QUERIES

So far, we have focused on SPJUD queries. In this section

we extend our discussion to aggregate queries. First we will

demonstrate the challenges that arise for aggregate queries,

and then propose our solutions to overcome them. We make

some assumptions on the form of aggregate queries: (1) no

aggregate values or NULL values are allowed in the group

by attributes; (2) selection predicates involving aggregate

values (HAVING) are in the simple form expr relop expr ; (3)
there is no difference operation above an aggregate operator.

5.1 Challenges with Aggregate Queries

Witness is too strict. Remember that for SPJUD queries, we

find the smallest counterexample by first picking an output

6

tuple in (Q1 −Q2)(D) and then finding the smallest witness

for this tuple w.r.t. Q1 −Q2 and D. However, for aggregate
queries, if we still look for witnesses for output tuples, it

is likely that we are unable to find any witnesses smaller

than the input database instance — the aggregate value may

change if any tuple is removed from the input. Following

Example 4 illustrates this issue.

Example 4 (Challenge with Witness for Aggregate

Values). Suppose we have two aggregate queries Q1 and Q2

aimed at computing the average grade of students in CS courses,

using the two tables in Figure 1.

Q1 :SELECT s.name , avg(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name

Q2 :SELECT s.name , avg(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name

GROUP BY s.name

Result of Q1(D):
name avg_grade

Mary 87.5

John 90

Jesse 92.5

Result of Q2(D):
name avg_grade

Mary 90

John 89

Jesse 92.5

In this example, Q2 forgets to select on departments. To find a

counterexample through finding a witness, we have to keep all

records of the student as the witness. E.g., we can only return

all Mary’s registration records as the witnessW to keep (Mary,

90) in Q2(W) but not in Q1(W). However, to show that Q1 will

return a different result from Q2 over some counterexample

C ,C can contain only one tuple (Mary, 208D,ECON , 88), and
Q1(C) is empty while Q2(C) returns (Mary, 88).

Computation overhead by how-provenance.We cannot

directly apply Basic orOptσ (Section 4) for aggregate queries

because: (i) the why-provenance model does not consider ag-

gregate queries; (ii) while how-provenance can be extended

to support aggregate queries by storing all possible combina-

tions of grouping tuples [34], it leads to exponential overhead

and thus is impractical if there exist large groups.

Selection predicates with aggregate values. When the

queries contain selection predicates with aggregate functions

COUNT or SUM, it is possible that we have to keep all tuples

in one group to make the result tuple satisfy the selection

predicates. See Example 5.

Example 5 (Challenge with Selection on Aggregate

Values). Continued with Example 4, but both queries are ex-

tended to find the average grade of CS courses of students who

registered at least 3 CS courses.

Q1 :SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name

HAVING COUNT(r.course)>=3

Q2 :SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name

GROUP BY s.name

HAVING COUNT(r.course)>=3

Result of Q1(D):
name avg_grade

Jesse 90

Result of Q2(D):
name avg_grade

Mary 90

Jesse 90

Again, Q2 returns (Mary, 90) that should not be in the correct

result, because it does not select on departments. And we have

to return all three courses Mary registered to make (Mary, 90)
still in the result of Q2 but not in the result of Q1. Therefore,

when the selection predicate involves the comparison between

count or sum with a large constant number, we have to return

a large fraction of tuples in the test database instance in order

to make the output tuple satisfy the selection predicate.

5.2 Applying Provenance for Aggregates

To address the first two challenge in Section 5.1 (the third

challenge is discussed in Section 5.3), we consider apply-

ing provenance for aggregated queries by Amsterdamer et

al.[2]. Their approach annotates the provenance information

with the individual values within tuple using commutative

monoid (for aggregate) and commutative semirings (for an-

notation). The tuples in the input relations are regarded as

symbolic variables and thus the aggregate values can be

encoded as symbolic expressions. The selection predicates

that involve aggregate values can be encoded as symbolic

logical expressions. Then we can express Q1(D
′) , Q2(D

′)

using symbolic inequality expressions: assert that a group

only exists in one of the query results, or the group exists

in both query results but the aggregate values are different.

Table 2 shows the provenance of aggregate queries for Ex-

ample 5. For instance, t4 ⊗ 100 +AVG t5 ⊗ 75 represents the

AVG value of a group containing two tuples t4 and t5 in the

original query result, and the value of the attribute in the

AVG function of tuple t4 if 100, and the value is 75 for t5.
If t4 is removed from the input relations, then t4 ⊗ 100 will

not contribute to the AVG value. Like the how-provenance,

(t1(t4 + t5)) (t4 ⊗ 1 +SUM t5 ⊗ 1 ≥ 3) indicates how the re-

sult tuple is derived from the input or intermediate tuples:

t1(t4 + t5) means that the group exists iff t1 exists and one of

t4 and t5 exists; t4⊗1+SUM t5⊗1 ≥ 3 represents the selection

criterion: the COUNT (a special case of SUM) value should be

greater or equal to 3. Based on these provenance expressions,

a counterexample forQ1 andQ2 w.r.t. tuple (Mary, 90) can be
given by solving the constraint (prv4 ⊕prv1) ∨ (val4 , val1),
and we can iterate over all output tuples to find the smallest

counterexample, instead of finding a global smallest witness

of tuples in Q1(D) \Q2(D).

7

Q1

name avg_grade provenance

Mary t4 ⊗ 100 +AVG t5 ⊗ 75 val1 (t1(t4 + t5)) (t4 ⊗ 1 +SUM t5 ⊗ 1 ≥ 3) prv1

John t7 ⊗ 90 val2 (t2t7) (t7 ⊗ 1 ≥ 3) prv2

Jesse t9 ⊗ 95 +AVG t10 ⊗ 90 val3 ((t3 (t9 + t10)) (t9 ⊗ 1 +SUM t10 ⊗ 1 +SUM t11 ⊗ 1 ≥ 3) prv3

Q2

name avg_grade provenance

Mary t4 ⊗ 100 +AVG t5 ⊗ 75 +AVG t6 ⊗ 95 val4 (t1(t4 + t5 + t6)) (t4 ⊗ 1 +SUM t5 ⊗ 1 +SUM t6 ⊗ 1 ≥ 3) prv4

John t7 ⊗ 90 +AVG t8 ⊗ 88 val5 (t2(t7 + t8)) (t7 ⊗ 1 +SUM t8 ⊗ 1 ≥ 3) prv5

Jesse t9 ⊗ 95 +AVG t10 ⊗ 90 val6 (t3(t9 + t10 + t11)) (t9 ⊗ 1 +SUM t10 ⊗ 1 +SUM t11 ⊗ 1 ≥ 3) prv6

Table 2: Provenance for Aggregate Queries in Example 5

5.3 Optimizations

The provenance-based approach can be optimized further.

5.3.1 Parameterizing the Queries. To address the third chal-

lenge, when the queries involve comparisons on aggregate

values with constant numbers, we modify the definition

of our problem by parameterizing the queries. We replace

the constants in selection predicates with symbolic variables

when passing the provenance expressions to the solver. Then

we are expected to get a smaller counterexample with differ-

ent constant values in the selection predicates, compared to

the one under the original parameter settings.

Definition 3 (Smallest Parameterized Counterexam-

ple Problem). Given two parameterized queries Q1 and Q2,

and a parameter setting λ and a database instance D, where
Q1(λ,D) , Q2(λ,D), the smallest parameterized counterex-

ample problem (SPCP) is to find a parameter setting λ′ and
a subinstance D ′

of D, such that Q1(λ
′,D ′) , Q2(λ

′,D ′), and

the total number of tuples in D ′
is minimized.

Example 6 (Smallest Parameterized Counterexample).

Here we show an example of parameterized queries based on

Example 5 by making the number of CS courses in the queries

a parameter.

Q1 : SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

GROUP BY s.name

HAVING COUNT(r.course)>= @numCS

Q2 : SELECT s.name , AVG(r.grade) as avg_grade

FROM Student s, Registration r

WHERE s.name=r.name

GROUP BY s.name

HAVING COUNT(r.course)>=@numCS

These two queries return:

Q1(numCS = 3,D):
name avg_grade

Jesse 90

Q2(numCS = 3,D):
name avg_grade

Mary 90

Jesse 90

By using a different parameter setting, the size of coun-

terexample can be reduced. When@numCS = 3, the smallest

counterexample C is t1, t4, t5, t6. But if@numCS = 1, we only

need to return t1, t6.

Below is an example illustrating how to encode the prove-

nance for aggregate queries to SMT formulas.

1 (declare-const t1 Bool)

2 ...

3 (declare-const t11 Bool)

4 (declare-const num_CS Int)

5 (define-fun b2i ((x Bool)) Int (ite x 1 0))

6 (assert
7 (or
8 (distinct
9 (and
10 (and t1 (or t4 t5))

11 (>= (+ (b2i t4) (b2i t5)) num_CS))

12 (and
13 (and t1 (or t4 t5 t6))

14 (>= (+ (b2i t4) (b2i t5) (b2i t6)) num_CS)))

15 (not
16 (=

17 (\ (+ (* (b2i t4) 100) (* (b2i t5) 75)) (+ (b2i

t4) (b2i t5)))

18 (\ (+ (* (b2i t4) 100) (* (b2i t5) 75) (* (b2i t6

) 95)) (+ (b2i t4) (b2i t5) (b2i t6)))

19))))

20 (minimize (+ (b2i t1) (b2i t2) ... (b2i t11)))

Listing 2: SMT-LIB Input for Example 6

5.3.2 A Heuristic Approach. The provenance-based solution
may not scale very well when a group contains too many

tuples and thus the SMT formulas involve toomany variables,

even if we choose the group with the least number of tuples.

Assume that the aggregate functions and attributes are the

same in two queries, to reduce the number of variables in

SMT formulas, we decide to look into the different tuples

between two groups. E.g., for simplicity, assume that bothQ1

and Q2 are in the form of γG1,agg1(A1),agg2(A2), ...,aggk(Ak)(Q
′
1
(D))

and γG2,agg1(A1),agg2(A2), ...,aggk(Ak)(Q
′
2
(D)) (the aggregations are

done at last), one of the following two cases must be true: (i)

the group in Q1(D) that generates t does not exist in Q2(D)
(grouping attributes G1 may or may not be equal to G2); (ii)

the group in Q1 that generates t also exists in Q2, but one

of the aggregate values are different. In either case, we can

directly compare the result of Q ′
1
(D) and Q ′

2
(D) and find at

least one tuple that exists in only one of them. The following

example illustrates how this method works. Note that Q ′
1

andQ ′
2
can include nested aggregate queries, as long as there

are no aggregate values in their schema — aggregate values

can be involved in selections or joins.

Example 7 (Heuristic Approach on Example 4). Q ′
1
:

SELECT s.name , r.grade

FROM Student s, Registration r

WHERE s.name=r.name AND r.dept='CS'

8

Algorithm 3 Aддopt : The heuristic algorithm for aggregate

queries

Smallest-Counterexample-Aggregate-Heu(Q1,Q2,D,Λ)

1 Λ = {λ1, ...} is the original parameter setting

2 Q1 = σaдд1(A1) op λ1γG1,agg1(A1),agg2(A2), ...,aggk(Ak)(Q
′
1
(D)),

3 Q2 = σaдд1(A1) op λ1γG2,agg1(A1),agg2(A2), ...,aggk(Ak)(Q
′
2
(D))

4 repeat

5 Pick one tuple t in the result of Q ′
1
(D) \Q ′

2
(D),

6 A′
1
...A′

k = the attributes of t

7 Q ′ = σA′
1
=t .A′

1
,A′

2
=t .A′

2
, ...,A′

k=t .A
′
k
(Q ′

1
−Q ′

2
)

8 ϕ = the prv. for agg. queries of tuple t w.r.t. Q ′(D)
9 obj = #true_values in ϕ
10 η = OptSMT_Solver(ϕ, obj)
11 Dη = {t ′ | η(t ′) is true}
12 Set Λ′

according to values in Dη
13 until Q1(Dη ,Λ

′) , Q2(Dη ,Λ
′)

14 Return Dη

Q ′
2
:SELECT s.name , r.grade

FROM Student s, Registration r

WHERE s.name=r.name

Q ′
1
(D):

name grade name grade

Mary 100 Jesse 95

Mary 75 Jesse 90

John 90 Jesse 85

Q ′
2
(D):

name grade name grade

Mary 100 John 88

Mary 95 Jesse 95

Mary 75 Jesse 90

John 90 Jesse 85

Q ′
2
does not select on departments so it returns some addi-

tional tuples comparing to Q ′
1
: (Mary, 95) and (John, 88). And

now we can apply the method for SPJUD queries in the pre-

vious section and then return either {t1, t6} or {t2, t8} as the
counterexample — they can explain why the aggregate value

on Mary or John are different in Q1 and Q2.

When the queries involve comparisons on aggregate val-

ues at the top of the query tree, e.g., σaдд1(A1) op const
γG1,agg1(A1),agg2(A2), ...,aggk(Ak)(Q

′
1
(D)), we can also apply the heuris-

tic approach by parameterizing the queries and directly

looking into Q ′
1
and Q ′

2
. After finding the smallest coun-

terexample C for Q ′
1
and Q ′

2
, the next step is to make sure

Q1(C) , Q2(C) otherwise it fails to distinguish the original

queries. On one hand, if aggregate values are involved in

the selection predicate at the top of the query tree, we pa-

rameterize the original queries and set a reasonable number

such that the results of at least one of Q ′
1
(C) and Q ′

2
(C) will

pass the selection. For COUNT we set the parameter in the

predicate to be 1 or 0 if the operator is ‘=’ or ‘>’, while for

SUM we set the parameter to be the maximum value or the

minimum value of the attribute in the aggregate function.

And it is similar for MAX, MIN, and AVG. On the other hand,

if bothQ1(C) andQ2(C) are not empty, their results may hap-

pen to be the same since we do not add any constraints on

the aggregate values — the only guarantee is Q ′
1
(C) , Q ′

2
(C).

Therefore we have to evaluate the queries on the counterex-

ample we find, and if Q1(C) = Q2(C), we re-run the SMT

Solver on the same formulas but asking the solver to return

a different model until we get a satisfying counterexample.

6 IMPLEMENTATION

Provenance has been extensively studied in the database

community, not only theoretically [2, 10, 19], but also there

are systems that can capture different forms of provenance

[4, 17, 18, 24, 31, 35]. However, to the best of our knowledge,

there are no systems available that support how-provenance

for general SPJUD and aggregate queries. Since building a

comprehensive system to efficiently capture provenance is

not the goal of this paper, for simplicity, we implemented our

system, called RATest, in Python 3.6 with a relational algebra

interpreter [3]. This interpreter translates relational algebra

queries into SQL common table expression (CTE) queries,

and each relational algebra operator is translated into a SQL

subquery. RATest has a web UI built using HTML, CSS,

and JavaScript. It runs on Ubuntu 16.04 and uses Microsoft

SQLServer 2017 as the underlying DBMS.

First, RATest takes two queries in Relational Algebra as

input. Then the relational algebra interpreter interprets them

and generates two SQL queries consisting of multiple sub-

queries. Next, it rewrites each subquery by adding one ad-

ditional column of provenance expression. For aggregate

queries, all columns of aggregate values are also rewritten to

symbolic expressions. These expressions are stored as strings

in the SMT-LIB format. For each input relation, we added one

additional ‘prv’ column of tuple identifiers. The rewriting

rules are listed below by the relational algebra operator:

Select, Project, Union. For selection/projection/union, we

directly select the prv column from the input relation. If the

selection predicate involves aggregate values (i.e., HAVING),

we construct a symbolic logical expressionwith the operands,

and take the conjunction of the prv column and the symbolic

logical expression. Duplicates from projection/union will be

considered in de-duplicate discussed below.

Join. We take the AND (∧) of the prv column of the two

joining tuples.

Difference. Remember that for difference operator, there

are two cases while evaluating R − S : (1) t ∈ R, t ∈ S . (2)
t ∈ R, t < S . In the first case, the query is transformed into

a join query where the join predicate is that the tuple in R
should equal to the tuple in S (excluding the prv column);

In the second case, we add a ‘NOT EXISTS’ subquery to find

those tuples in R but not in S , and the prv column is the same

as those in R; then we take a union of these two cases.

SELECT R.A, R.B FROM R EXCEPT SELECT S.A, S.B FROM S

is rewritten to:

(SELECT R.A, R.B,

'(and␣' || R.prv || '␣(not␣' || S.prv || '))'

9

FROM R, S WHERE R.A = S.A AND R.B = S.B) UNION
(SELECT R.A, R.B, R.prv

FROM R WHERE NOT EXISTS(
SELECT S.A, S.B

FROM S

WHERE S.A = R.A AND S.B = R.B))

De-duplicate. Duplicate tuples may arise from projection

or union. We add a group by clause that contains all columns

in the select clause except the prv column. The prv column

is computed using ‘string_agg’ function:

'(or␣' || string_agg(R.prv , '␣') || ')'

Once the queries are rewritten, RATest applies the algo-

rithms in Section 4 and Section 5 according to their query

classes, to generate SMT constraints. Then, RATest passes

the constraints to the Z3 SMT Solver (an efficient optimiz-

ing SMT Solver by Microsoft Research)[9, 15] 4.7.1, and sets

“minimizing the number of variables set to true” as the objec-

tive function. Finally, the satisfying model returned by the

Solver represents the counterexample, and the counterexam-

ple is shown on the web UI with the query results of two

input queries over this counterexample.

7 EXPERIMENTS

We present experiments to evaluate our algorithms in this

section. The input queries used in our initial experiment for

SPJUD queries were collected from student submissions to a

relational algebra assignment in an undergraduate database

course in a US university in Fall 2017; therefore, the wrong

queries were “real,” although test database instances are syn-

thetic. In the experiment for aggregate queries, we use the

TPC-H benchmark[14]. We generate tables at scale 1, and

manually translated several TPC-H queries into Relational

Algebra and created some wrong queries ourselves. The sys-

tem runs locally on a 64-bit Ubuntu 16.04 LTS with 3.60 GHz

Intel Core i7-4790 CPU and 16 GB 1600 MHz DDR3 RAM.

7.1 Real World SPJUD Queries

In this subsection we evaluate the efficacy of our algorithms

in Section 4 for SPJUD queries on the course dataset. The

dataset comes from one relational algebra assignment in Fall

2017, which asked students to write SPJUD queries using the

relational algebra interpreter. It includes 8 questions and 141

students in total, and the queries are evaluated over the test

instances we generated. The test instance may not be able to

differentiate all incorrect queries, although there are more in-

correct queries discovered when the test instance gets larger

(see Table 3). Some questions involve very complex queries

to find tuples satisfying conditions with universal quantifica-

tion or uniqueness quantification requiring multiple uses of

difference (see Section 8 for concrete examples), and solicited

some extremely complex student solutions with scores of

operators; we are not aware of any directly related work that

is able to handle this level of query complexity. We had to

drop two overly complicated student queries that involved

massive cross products.

of Tuples

in DB

of incorrect

queries

of students with

incorrect queries

1,000 111 76

4,000 167 87

10,000 168 88

40,000 169 88

100,000 170 88

Table 3: |D | vs. # of wrong queries discovered

SCP vs. SWP. As discussed in Section 2, a poly-time solution

for SWP also gives a poly-time solution for SCP if we consider
data complexity, since we can iterate over all tuples t in
Q1(D)\Q2(D) to find the global optimal solution. The number

of output tuples is polynomial in |D |, but can be exponential

in query size (e.g., when we join k tables that form a cross

product), and therefore it does not necessarily give a poly-

time solution in terms of combined complexity. However,

the standard practice is to consider data complexity, since

the size of the query is expected to be a small constant. For

practical purposes, even polynomial combined complexity

may not give interactive performance. Herewe experimented

on the algorithms for SPJUD queries in Section 4 to compare

SCP and SWP in practice: The Basic algorithm using Z3 SMT

optimizer instead of a SAT solver and the Optσ algorithm.

See Table 4. Surprisingly, all smallest witnesses returned by

Optσ are of the same size as the smallest counterexamples

returned by Basic, i.e., Basic reaches the global optimum

on the first output tuple. This may be a coincidence, but

for 168 of 170 wrong queries we discovered, the size of the

smallest witnesses of all output tuples are the same. The

result indicates that in most cases, we can useOptσ for better

performance (6.9x faster) with only a small probability of

not reaching the global minimum. Given this result, in the

rest of this section, we will only experiment on SWP.

Mean Runtime

(sec.)

Mean Size of

Counterexample

SCP— Basic 26.29 3.52

SWP— Optσ 3.80 3.52

Table 4: SCP vs. SWP, # tuples = 100k

Size of the data vs. time. We vary the number of tuples

in the input relations of 1,000: 4,000: 10,000: 40,000: 100,000.

See figure 4: raw is for evaluating queries Q1 −Q2, the dif-

ference of students’ query and the standard query; prov-all

is for evaluating rewritten queries Q1 − Q2 that also store

provenance; prov-sp is for provenance queries with selec-

tion on one tuple; solver-naive-128 is for finding the small-

est witness with an SAT solver that tries at most 128 different

models; solver-opt is for finding the smallest witness of the

first result tuple with Z3 SMT optimizer; solver-opt-all is

for finding the smallest witness of all result tuples with Z3

SMT optimizer. The running time of rewritten provenance

queries with selection pushdown is much faster than the

10

raw queries (29x when |D | = 100K) and the provenance

query without selection on tuples (42x when |D | = 100K).
This is what we expect: computing provenance expression

will cause huge overheads, but only for one single tuple is

definitely affordable.

Query complexity vs. time. Figure 3 shows the running

time of each component of Optσ vs. different metrics of

the query complexity (number of operators, number of dif-

ferences, and height of the query tree). The running time

increases roughly as the complexity of queries increases.

Note that when height of the query or the number of oper-

ators in the query reaches the maximum, the provenance

query dominates the running time, however, in most cases,

evaluating the raw CTE SQL query is the slowest part.

Solver strategy vs. witness size. Since our goal is to find

the smallest witness, the metric for evaluating the quality of

the witnesses as explanations is the size. We experiment dif-

ferent constraint-solving strategies: Naive-* is to use the Z3

SMT solver to get satisfying models to the Boolean formula

of how-provenance, until there are no more satisfying mod-

els or it finishes enumerating M different models (we chose

M=128); Opt is to use Z3 SMT optimizer to directly find the

model with least number of variables set to true. Naive-* is

not satisfying because there is no guarantee on the model

size it finds. Figure 5 summarizes the results. Since the SAT

solver used by Naive-* can return an arbitrary model every

time, we repeat each experiment with Naive-* 10 times and

report the average minimum witness size found among the

10 repetitions. Opt always return a smaller witness com-

pared to Naive-*, while the runtime overhead compared to

even Naive-1 is negligible. Of course, performance of these

approaches heavily depends on the solver implementation;

a comprehensive evaluation would be beyond the scope of

this paper. Here, we simply observe that our implementation

of Opt provides good performance and solution quality in

practice, as it cannot be easily beaten by simply enumerating

a number of models.

7.2 Synthetic Aggregate Queries

We experimented on the TPC-H benchmark database gener-

ated at scale 1 on queries Q4, Q16, Q18, Q21, and a modified

Q21-S with an additional selection on aggregate value at

the top of the query tree. We choose these queries because

they do not involve arithmetic operations on aggregate func-

tions. First we dropped the ORDER BY operator and rewrote

these queries using the relational algebra interpreter, then

we experimented both the provenance for aggregate queries

approach (Agg-Basic) and the heuristic approach (Agg-Opt)

discussed in Section 5. We also experimented provenance

for aggregate queries approach with parameterization (Agg-

Param) on Q18 (it has a selection predicate with aggregate

value). We intentionally made two wrong queries for each

query, of which the errors include different selection condi-

tions, incorrect use of difference, and incorrect position of

projection. These are common errors in the students queries

from the previous experiment.

Figure 6 includes the runtime of our algorithms to find

the smallest counterexample for each TPC-H query we ex-

periment. We present a breakdown of the execution time of

our solutions: raw query evaluation time, provenance query

evaluation time, SMT-solver running time. We find that the

heuristic algorithm performs well for queries where the ag-

gregation operators are at the top of the query tree. While

the performance of the provenance for aggregate query al-

gorithm decreases as the database size increases, and is sig-

nificantly affected by the number of tuples in the group (The

SMT solver does not scale well).

For Q18, since it involves an aggregate predicate, we ex-

periment the effectiveness of the algorithm with parameter-

ization. Figure 7 shows the solver runtime and the size of

the counterexample of the provenance for aggregate query

algorithm with/without parameterization. The size of the

counterexample is reduced by 70% while the runtime only

increases from 0.0134 seconds to 0.0210 seconds.

8 USER STUDY

Since one motivation of our work is to provide small exam-

ples as explanations of why queries are incorrect, we built

our RATest as a web-based teaching tool and deployed in an

undergraduate database class in a US university in Fall 2018

with about 170 students. For one homework assignment, stu-

dents needed to write relational algebra queries to answer 10

questions against a database of six tables about bars, beers,

drinkers, and their relationships. The difficulties of these 10

problems range from simple to very difficult. The students

had a small sample database instance to try their queries on.

Their submissions were tested by an auto-grader against a

large, hidden database instance designed to exercise more

corner cases and catch more errors; if these answers differed

from those returned by the correct queries (also hidden),

the students would see the failed tests with some addition

information about the error (but not the hidden database

instance or the correct queries). The final submissions were

then graded manually informed by the auto-grader results;

partial credits were given. For the purpose of this user study,

we normalize the student score for each question to [0, 100].
We did not wish to create unfair advantages for or undue

burdens on students with our user study. This consideration

constrained our user study design. For example, we ruled

out the option of dividing students into groups where only

some of them benefit from RATest; we also ruled out creat-

ing additional homework problems without counting them

towards the course grades. Therefore, we made the use of

11

Figure 3: Query complexity vs. time, algorithm=Optσ , #tuples=100k; raw is for evaluating queries

Q1 −Q2; prov-sp is for provenance queries with selection on one tuple; solver-opt is for finding the

smallest witness with Z3 SMT optimizer; total is the total running time of Optσ .

Figure 4: Average Running

Time of Each Component.

Figure 5: (a)Witness size vs. solver strategies andQueries, #tuples=100K;

(b) Witness size vs. solver strategies and runtime, #tuples = 100K

Query

Agg-Basic Agg-Opt

Raw Query

Eval. Time

Prov. Query

Eval. Time

Solver

Runtime

Raw Query

Eval. Time

Prov. Query

Eval. Time

Solver

Runtime

Q4 3.6036 4.0403 timeout 2.1382 0.0029 0.0151

Q16 0.8676 0.1349 0.2471 0.7618 0.1084 0.0022

Q18 6.8751 0.0086 0.0134 14.2513 0.0130 0.0039

Q21 21.5184 2.6205 31.1106 21.8072 0.0577 0.0066

Q21-S 21.5408 2.8034 155.6828 22.1634 0.0524 0.0061

Figure 6: Computation time (sec.), for the TPC-H benchmark, scale=1,

timeout = not finishing after 2 hours

Solver

Runtime (sec.)

Size of Coun-

terexample

Agg-Basic 0.0134 25.3

Agg-Param 0.0210 7.5

Figure 7: Effectiveness of algo-

rithm with parameterization,

on TPC-H Q18, scale-factor = 1

RATest completely optional (and with no extra incentives

other than the help RATest offers itself). RATest was given

the correct queries and the same database instance used by

the auto-grader for testing. If a student query returned an

incorrect result, RATest would show a small database in-

stance (a subset of the hidden one), together with the results

of the incorrect query and the hidden correct query on this

small instance. We made RATest available for only 5 out of

the 10 problems. Leaving some problems out allowed us to

study the same student’s performance on different problems

might be influence by the use of RATest. The 5 problems

were chosen to cover the entire range of difficulties:

(b) Find drinkers who frequent any bar serving Corona.

(d) Find drinkers who frequent both JJ Pub and Satisfaction.

(e) Find bars frequented by either Ben or Dan, but not both.

(g) For each bar, find the drinker who frequents it the great-

est number of times.

(h) Find all drinkers who frequent only those bars that serve

some beers they like.

Students must use basic relational algebra; in particular, they

were not allowed to use aggregation. Problems (g) and (i) are

more challenging than others: (g) involves non-trivial uses

of self-join and difference; (i) involves two uses of difference.

We released RATest a week in advance of the homework

due date. We collected usage patterns on RATest, as well

as how students eventually scored on the homework prob-

lems. Ideally, we wanted to answer the following questions:

i) Did students who used RATest do better than those who

didn’t? ii) For students who used RATest, how did they do

on problems with and without RATest’s help? We should

note upfront that we expected no simple answers to these

questions, as scores could be impacted by a variety of factors,

including the inherent difficulty of a question itself, individ-

ual students’ abilities and motivation, as well as the learning

effect (where one gets better at writing queries in general

after more exercises). Therefore, to supplement quantitative

analysis of usage patterns and scores, we also gave an op-

tional, anonymous questionnaire to all students after the

homework due date.

QuantitativeAnalysis ofUsagePatterns and Scores. Be-

fore exploring the impact of RATest on student scores, let us

examine some basic usage statistics, summarized in Figure 8.

Overall, 137 students (more than 80% of the class) attempted

12

Problem

of users average # of attempts

total who got a

correct answer

eventually

over all

users

before a correct

answer

(b) 102 93 4.08 1.79

(d) 93 93 3.12 1.57

(e) 100 95 5.24 3.45

(g) 99 91 5.90 3.76

(i) 120 94 11.10 7.46

Figure 8: Statistics on RATest usage.

Did the student use

No Yes

Time of the first use (before due date)

RATest for (i)? 5-7 days 3-4 days 2 days 1 day

of students 49 120 45 30 16 29

Mean score on (i) 89.80 94.40 97.14 99.05 91.96 86.70

Std. dev. 30.58 19.00 15.41 5.22 25.54 26.16

Mean score on (h) 88.34 93.57 96.83 95.24 95.54 85.71

Std. dev. 31.77 20.86 14.89 18.12 17.86 30.06

Mean score on (j) 85.46 85.42 96.67 90.00 82.81 64.66

Std. dev. 34.17 34.39 16.51 30.51 37.33 47.02

Figure 9: Comparison of performance on (h) and (j) between stu-

dents whether they used RATest for (i) or not. Figure 10: Results of student feedback.

Did the student use RATest? No Yes

Problem (b)

of students 67 102

Mean score 100.00 100.00

Std. dev. 0.00 0.00

Problem (d)

of students 76 93

Mean score 100.00 100.00

Std. dev. 0.00 0.00

Problem (e)

of students 69 100

Mean score 99.03 99.67

Std. dev. 5.63 3.33

Problem (g)

of students 70 99

Mean score 92.38 97.98

Std. dev. 26.11 14.14

Problem (i)

of students 49 120

Mean score 89.80 94.40

Std. dev. 30.58 19.00

Table 5: Comparison of performance between stu-

dents who did not use RATest and those who did, on

problems for which RATest was available.

a total of 3,146 submissions to RATest. The sheer volume

of the usage speaks to the demand for tools like RATest,

and the sustained usage (across problems) suggests that the

students found RATest useful. It is also worth noting that

number of attempts reflects problem difficulty; for example,

(i), the most difficult problem, took far more attempts than

other problems. We also note that while RATest helped the

vast of majority of its users get the correct queries in the end;

some users never did. We observed in the usage log some un-

intended uses of RATest: e.g., one student made more than

a hundred incorrect attempts on a problem, most of which

contained basic errors (such as syntax); apparently, RATest

was used to just try queries out as opposed to debugging

queries after they failed the auto-grader. Such outliers ex-

plain the phenomenon shown in Figure 8 where the overall

average # of attempts were much higher than the average #

before a correct attempt.

Next, we examine how the use of RATest helps improve

student scores. Table 5 compares the scores achieved by stu-

dents who did not use RATest versus those who did, on

problem for which we made RATest available. For simple

problems such as (b), (d), and (e), there is no little or no differ-

ence at all, because nearly everybody got perfect scores with

or without help from RATest. However, for more difficult

problems, (g) and (i), students who used RATest had a clear

advantage, with average scores improved from 92.38 to 97.98

and from 89.80 to 94.40, respectively. Of course, within the

constraints of our user study, it is still difficult to conclude

how much of this improvement comes from RATest itself; it

is conceivable that students who opted to use RATest were

simply more diligent and therefore would generally perform

better than others. While we cannot definitively attribute all

improvement in student performance to RATest, we next

provide some evidence that it did help in a significant way.

Here, we zoom in on the three most difficult problems, (h),

(i), and (j); RATest was only made available for (i). Problem

(h) (find all drinkers who frequent only those bars that serve

some beers they like) is quite similar to (i) (the difference

being “some beers” vs. “only beers”). Problem (j) (find all

(bar1, bar2) pairs where the set of beer served at bar1 is a proper

subset of those served at bar2) on other hand requires very

different solution strategy. Between those who did not use

RATest for (i) and those who did, Figure 9 (focus on the first

three columns and ignore the rest for now) compares their

scores on (h) and (j). We see that for the similar problem (h),

those who used RATest on (i) significantly improved their

scores on (h), with a degree comparable to the improvement

on (i). For the dissimilar problem (j), those who used RATest

no (i) showed no improvement in their scores on (j)—the two

score distributions are practically the same. We make two

observations here. First, it is clear that not all improvement in

student performance can be explained by student “diligence”

alone; otherwise we would have seen higher performance

on (j) for students who used RATest on (i). Second, there is

clearly a learning effect: using RATest for one problem can

help with a similar problem: (i) helps (h).

13

Figure 9, in its last four columns, also breaks down the

statistics by when a student started to work on Problem (i).

Not surprisingly, we see that “procrastinators” (those who

started very close to the due date) performed clearly worse

than others. If somebody started to work on (i) using RATest

only the day before the homework was due, this individual

would be expected to perform even worse than an “average”

student who opted not to use RATest at all, especially for

the last problem. It would have been nice if we can similarly

break down the statistics for students who opted not to use

RATest at all, but it was not possible in that case to know

when they started to work on the problems. We could only

conjecture that a similar trendmight exist for procrastinators,

so using RATest did not hurt any individual’s performance.

Results of Anonymous Questionnaire. We collected

134 valid responses to our anonymous questionnaire; Fig-

ure 10 summarizes these responses. The feedback was largely

positive. For instance, 69.4% of the respondents agree or

strongly agree that the explanation by counterexamples

helped them understand or fix the bug in their queries, and

93.2% would like to use similar tools in the future for assign-

ments on querying databases. We also asked students which

problems they found RATest to be most helpful (multiple

choices were allowed): 58% voted for (g) and 94% voted for

(i), which were indeed the most challenging ones. We also so-

licited open-ended comments on RATest. These comments

were overwhelming positive and reinforces our conclusions

from the quantitative analysis, e.g.:

• “It was incredibly useful debugging edge cases in the

larger dataset not provided in our sample dataset with

behavior not explicitly described in the problem set.”

• “Overall, very helpful andwould like to see similar testers

for future assignments.”

• “I liked how it gave us a concise example showing what

we did wrong.”

Summary. Overall, the conclusion of our user study is

positive. Students who used RATest did better, and their

improvement cannot be attributed all to merely the fact that

they opted to use an additional tool—RATest did add real

value. Also, using RATest on one problem could also help

with another problem, provided that the problems are similar.

Finally, most students found RATest very useful and would

like to use similar systems in the future.

9 RELATEDWORK

Test data generation. Cosette[12], which targets at decid-

ing SQL equivalence without any test instances, encodes SQL

queries to constraints using symbolic execution, and uses

a constraint solver to find counterexamples over which the

two queries return different results. Cosette uses incremental

solving to dynamically increase the size of each symbolic re-

lation, thus it will return counterexamples with least number

of distinct tuples, but the total number of tuples is not mini-

mized. ALso, it deals with only integer domain and returns

counterexamples of arbitary values, which may be hard for

people to read. XData[11] generates test data by covering dif-

ferent types of query mutants of the standard query, without

looking into wrong queries. Qex[38] is a tool for generating

input relations and parameter values for a parameterized

SQL query that also uses the SMT solver Z3, which aims

at unit testing of SQL queries. It does not support nested

queries and set operations and hence it cannot work for our

problem because of our use of difference.

Provenance and witness. Data provenance has primar-

ily been studied for non-aggregate queries: Buneman et

al.[10] defined why-provenance of an output tuple in the

result set, which they call the witness basis. Green et al.[19]

introduced how-provenance with the general framework

of provenance semiring. Sarma et al.[34] gave algorithms for

computing how-provenance over various RA operators in the

Trio system. Amsterdamer et al. [2] extended the provenance

semiring framework[19] to support aggregate queries. Be-

sides these theoretical works, there are systems that capture

different forms of provenance [4, 17, 18, 24, 31, 35]. How-

ever, to the best of our knowledge, no prior work considered

SWP/SCP, and there are no systems available that support

provenance for general SPJUD and aggregate queries.

Teaching or grading tool for programming. Due to

popularity of students taking programming-related courses,

teaching and grading tools for programming assignments

that automatically generate feedback for submissions are re-

ceiving a lot of attention[20, 23, 30]. In the database commu-

nity, Chandra et al. built XData[11] that can be used for grad-

ing by generating multiple test cases for different query mu-

tants, as well as giving immediate feedback to student. The

latter is similar to our RATest tool. Jiang and Nandi[22, 28]

designed and prototyped interactive electronic textbook to

help students get rapid feedbacks from querying the database

with novel interaction techniques.

Explanations for query answers. Explanations based

on tuples in the provenance has been recently studied by

Wu-Madden [39] and Roy-Suciu [33]. These works take an

aggregate query and a user question as input, find tuples

whose removal will change the answer in the opposite direc-

tion, and returns a compact summary as explanations.

REFERENCES

[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. On

the Limitations of Provenance for Queries with Difference. In

TaPP.

[2] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011.

Provenance for aggregate queries. In PODS. 153–164.

[3] Anonymous. 2017. A Relational Algebra Interpreter. (2017).

14

[4] Bahareh Arab, Dieter Gawlick, Venkatesh Radhakrishnan, Hao

Guo, and Boris Glavic. 2014. A generic provenancemiddleware

for database queries, updates, and transactions. In TaPP.

[5] Clark Barrett, Christopher L. Conway, Morgan Deters, et al.

2011. CVC4. In CAV ’11, Vol. 6806. Springer, 171–177.

[6] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-

lib standard: Version 2.0. In Proceedings of the 8th International

Workshop on Satisfiability Modulo Theories, Vol. 13. 14.

[7] Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo

theories. In Handbook of Model Checking. Springer, 305–343.

[8] Armin Biere. [n. d.]. CaDiCaL: Simplified Satisfiability Solver.

https://github.com/arminbiere/cadical. ([n. d.]). [Online; ac-

cessed 24-Oct-2018].

[9] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015.

νZ-an optimizing SMT solver. In International Conference on

Tools and Algorithms for the Construction and Analysis of Sys-

tems. Springer, 194–199.

[10] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001.

Why and where: A characterization of data provenance. In

International conference on database theory. Springer, 316–330.

[11] Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Mahesh-

wara Reddy, Shetal Shah, and S Sudarshan. 2015. Data genera-

tion for testing and grading SQL queries. The VLDB Journal

24, 6 (2015), 731–755.

[12] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin

Cheung. 2017. Cosette: An Automated Prover for SQL.. In

CIDR.

[13] Sara Cohen, Yehoshua Sagiv, and Werner Nutt. 2005. Equiva-

lences among aggregate queries with negation. ACM Transac-

tions on Computational Logic (TOCL) 6, 2 (2005), 328–360.

[14] Transaction Processing Performance Council. 2008.

TPC-H benchmark specification. Published at

http://www.tcp.org/hspec.html 21 (2008), 592–603.

[15] Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An efficient

SMT solver. In International conference on Tools and Algorithms

for the Construction and Analysis of Systems. 337–340.

[16] Michael R Garey, David S. Johnson, and Larry Stockmeyer.

1976. Some simplified NP-complete graph problems. Theoreti-

cal computer science 1, 3 (1976), 237–267.

[17] Boris Glavic and Gustavo Alonso. 2009. Perm: Processing

provenance and data on the same data model through query

rewriting. In ICDE. 174–185.

[18] Todd J Green, Grigoris Karvounarakis, Zachary G Ives, and

Val Tannen. 2007. Update exchange with mappings and prove-

nance. In PVLDB. 675–686.

[19] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007.

Provenance semirings. In PODS. 31–40.

[20] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade.

2017. DeepFix: Fixing Common C Language Errors by Deep

Learning.. In AAAI. 1345–1351.

[21] Tomasz Imieliński and Witold Lipski, Jr. [n. d.]. Incomplete

Information in Relational Databases. J. ACM 31, 4 ([n. d.]),

761–791.

[22] Lilong Jiang and Arnab Nandi. 2015. Designing interactive

query interfaces to teach database systems in the classroom.

In Proceedings of the 33rd Annual ACM Conference Extended

Abstracts on Human Factors in Computing Systems. 1479–1482.

[23] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and

Sumit Gulwani. 2016. Semi-supervised verified feedback gen-

eration. In SIGSOFT. 739–750.

[24] Grigoris Karvounarakis, Zachary G Ives, and Val Tannen. 2010.

Querying data provenance. In SIGMOD. 951–962.

[25] Stefan Kratsch, Dániel Marx, and Magnus Wahlström. 2010.

Parameterized complexity and kernelizability of max ones and

exact ones problems. In MFCS. 489–500.

[26] Michael Ley and Schloss Dagstuhl. 2018. DBLP database. https:

//dblp.uni-trier.de/xml/. (2018).

[27] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel,

and Marsha Chechik. 2014. Symbolic optimization with SMT

solvers. In ACM SIGPLAN Notices, Vol. 49. ACM, 607–618.

[28] Arnab Nandi. 2015. Breathing Life into Database Textbooks..

In CIDR.

[29] Werner Nutt, Yehoshus Sagiv, and Sara Shurin. 1998. Deciding

equivalences among aggregate queries. In PODS. 214–223.

[30] Sagar Parihar, Ziyaan Dadachanji, Praveen Kumar Singh, Ra-

jdeep Das, Amey Karkare, and Arnab Bhattacharya. 2017. Au-

tomatic grading and feedback using program repair for intro-

ductory programming courses. In Proceedings of the 2017 ACM

Conference on Innovation and Technology in Computer Science

Education. ACM, 92–97.

[31] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained

lineage at interactive speed. PVLDB 11, 6 (2018), 719–732.

[32] Sudeepa Roy, Vittorio Perduca, and Val Tannen. 2011. Faster

query answering in probabilistic databases using read-once

functions. In ICDT. 232–243.

[33] Sudeepa Roy and Dan Suciu. 2014. A formal approach to

finding explanations for database queries. In SIGMOD. 1579–

1590.

[34] Anish Das Sarma, Martin Theobald, and Jennifer Widom. 2008.

Exploiting lineage for confidence computation in uncertain

and probabilistic databases. In ICDE. IEEE, 1023–1032.

[35] Pierre Senellart, Louis Jachiet, SilviuManiu, and Yann Ramusat.

2018. ProvSQL: provenance and probability management in

postgreSQL. PVLDB 11, 12 (2018), 2034–2037.

[36] Niklas Sörensson and Niklas Eén. 2009. Minisat 2.1 and min-

isat++ 1.0-sat race 2008 editions. SAT (2009), 31.

[37] Moshe Y Vardi. 1982. The complexity of relational query

languages. In STOC. 137–146.

[38] Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux.

2010. Qex: Symbolic SQL query explorer. In International

Conference on Logic for Programming Artificial Intelligence and

Reasoning. Springer, 425–446.

[39] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining

Away Outliers in Aggregate Queries. PVLDB 6, 8 (2013), 553–

564.

15

https://github.com/arminbiere/cadical
https://dblp.uni-trier.de/xml/
https://dblp.uni-trier.de/xml/

A PROOFS OF THEOREMS IN SECTION 3

We will give the proofs of theorems in Table 1 in this section.

A.1 SJ and SPU Queries

Given t ∈ Q1(D) \Q2(D), the poly-time algorithm for SJ and

SPU queries involve finding a smallest witness of t in D for

Q1, and using the fact that Q2 is monotone and t < Q2(D),
∀D ′ ⊆ D, t < Q2(D

′).

Theorem 1. The SWP for two SJ queries is poly-time solv-

able in combined complexity.

Proof. Let R1, ...,Rk be all the relations that participate

in the SJ query Q1. For each relation Ri , i ∈ [1,k], there
must exist exactly one tuple ti = t .Ri (the Ri component

of t), which is part of the witness of t (under set semantic).

Since each ti must satisfy all selection conditions for t to
appear in Q1(D), the set Dt = {ti |i ∈ [1,k]} ensures that
t ∈ Q1(Dt), and must be minimal. Since Q2 is monotone and

t < Q2(D), we have t < Q2(Dt); hence t ∈ (Q2 −Q1)(Dt). The

running time to findDt is polynomial ink , giving polynomial

combined complexity. □

When projection is allowed, an output tuple may have

multiple minimal witnesses, and we pick any one of them.

Theorem 2. The SWP for two SPU queries is polynomial-

time solvable in combined complexity.

Proof. We first consider SP queries. Given an output tu-

ple t in Q1(D), we scan the input relation to find a tuple t ′

that satisfies the selection condition and whose projected

attributes equal to t . The smallest witness Dt only consists

of only t ′. For SPU queries, we do the same procedure as

SP queries. At least one relation will return t ′. Since Q2 is

monotone and t < Q2(D), we have t < Q2(Dt). The running

time to find Dt = {t ′} is polynomial in k . □

A.2 PJ Queries

For queries involving both projection and join, we show that

it is NP-hard in query complexity to find the smallest witness,

even when the query can be evaluated in poly-time.

Theorem 3. The SWP for two PJ queries is NP-hard in query

complexity.

Proof. We prove the theorem by a reduction from the

vertex cover problem with vertex degree at most 3, which

is known to be NP-complete [16] and is defined as follows:

Given an undirected graph G(V ,E) with vertex set V and

edge set E, where the degree of every vertex is at most 3,

decide whether there exists a vertex cover C of at most p
vertices such that each edge in E is adjacent to at least one

vertex in the set.

Construction. Given G(V ,E), suppose V = {v1, ...,vn},
and E = {e1, · · · , em}. We encode each vertex as a tuple

in the relation R(A,Z ,E1,E2,E3). For each vertex vi ∈ V ,
R contains a tuple ti = (vi , z, ei1, ei2, ei3), where ei1 , ei2 , ei3
are identifiers of edges adjacent to vi , i1 < i2 < i3. If the
degree of vi is less than 3, the identifiers are replaced by

a null symbol “∗”. The attribute Z = z is a constant for all
tuples. In addition to R, we havem relations S1, ..., Sm . Each

Si , i ∈ [1,m], has schema Si (E,Z). For the edge ei ∈ E, Si
contains a single tuple (ei , z). Let D = (R, S1, ..., Sm) be the
database instance.

Next, we construct Q1 involving P J that consist ofm sub-

queries as follows: For all i ∈ [1,m], let qi =
πZ (R ZR .E1=Si .E∨R .E2=Si .E∨R .E3=Si .E Si), which operates on

Si and R, checks for match of R.E1,R.E2, or R.E3 with Si .E,
and then projects on toZ . Then we constructQ1 = q1 Z q2 Z
... Z qm] using natural join on Z . All queries qi andQ1 have

a single attribute Z . Note that, initially, qi (D) = {(z)} for all
i ∈ [1,m], and thereforeQ1(D) = {(z)} as well. The queryQ2

also outputs the attribute Z , but not the tuple {(z)}. We set

Q2 = πZ (R ZR .Z,S1 .Z S1) (the choice of S1 is arbitrary), and
thereforeQ2(D) = {} is empty. The tuple t for whichwewant
to find the smallest witness in (Q1 −Q2)(D) is (z). In other

words, the goal is to find a subinstance D ′ = (R′, S ′
1
, ..., S ′m),

R′ ⊆ R, S ′
1
⊆ S1, ..., S

′
m ⊆ Sm , such that (z) ∈ Q1(D) \Q2(D).

Below we argue that G has a vertex cover of size ≤ p, if
and only if the SWP instance above has a witness D ′

of size

≤ p +m wherem is the number of edges in G.
The “Only If” direction. Suppose we are given a vertex

cover C with at most p vertices in G. We construct R′
i =

{tj | vj ∈ C}, and S ′i = Si for all i ∈ [1,m]. Since |C | ≤ p,
|D ′ | ≤ p +m since each Si contains a single tuple. Since C
is a vertex cover, for all edge ei = (vj ,vℓ) ∈ E, either vj ∈ C
or vℓ ∈ C . Suppose without loss of generality vj ∈ C . Then
(wlog.) assume tj = (vj , z, ei , e

′, e ′′) where e ′, e ′′ are other
two adjacent edges onvj (they could be ∗ as well if the degree
of vj is < 3). The tuple tj and the tuple Si (ei , z) will satisfy
the join condition of qi (irrespective of the position of ei in
ti), and the projection will output (z). Since C is a vertex

cover, for all i ∈ [1,m], qi (D
′) = {(z)}. Therefore, Q1(D

′) =

{(z)}. Q2(D
′) remains empty. Hence (z) ∈ Q1(D

′) \ Q2(D
′)

Therefore, D ′
is a witness of (z) of size at most p +m.

The “If” direction. For the opposite direction, consider a

witness D ′ = (R′, S ′
1
, ..., S ′m) where R

′ ⊆ R, S ′
1
⊆ S1, ..., S

′
m ⊆

Sm , |R
′ | + |S ′

1
| + ... + |S ′m | ≤ p +m, such that (z) ∈ Q1(D

′) \

Q2(D
′), i.e., (z) ∈ Q1(D

′). We construct C = {vi | ti ∈ R′}.

Note that if (z) ∈ Q1(D
′), (z) must be in the result of all

subqueries qi (D
′), i ∈ [1,m]. And qi (D

′) returns (z) if and
only if (a) S ′i is not empty (i.e., S ′i = Si since Si had only one

tuple), and (b) if ei = (vj ,vℓ), at least one of tj or tℓ must

appear in R′
to satisfy the join condition in qi ; otherwise qi

returns an empty result and thus Q1 returns an empty result.

Therefore, all S ′i must be equal to Si , |S
′
i | = 1. Then we have

16

v6v4 v5

v1

v2 v3

e1 e2

e3

e4 e5

e6

e7

(a) G(V ,E)

E Z

e1 z
...

E Z

e7 z
(b) S1, · · · , S7

A Z E1 E2 E3
v1 z e1 e6 ∗

v2 z e1 e2 e7
v3 z e2 e3 ∗

v4 z e4 e6 e7
v5 z e3 e4 e5
v6 z e5 ∗ ∗

(c) R

Figure 11: Example reduction in Theorem 3

|S ′
1
| + ... + |S ′m | =m. Since |D ′ | ≤ p +m, |R′ | ≤ p, and thus

we get a vertex cover C of size at most p.
An example reduction is shown in Figure 11. □

A.3 JU Queries

Theorem 4. The SWP for two JU queries is NP-hard in

query complexity.

Proof. We reduce from the vertex cover problem.

Construction. SupposeV = {v1, ...,vn} andE = {e1, · · · ,
em}. For each vertex vi in G, there is a relation Ri (Z) which
consists of a single tuple (z). For each edge ei = (vj ,vℓ) ∈ E,
we construct a query qi = R j ∪ Rℓ . Then we construct a

query Q1 = q1 Z · · · Z qm , where the join is a natural join

on Z . We construct Q2 = R1 ZR1 .Z,R2 .Z R2 (the choice of

R1,R2 is arbitrary). Hence D = (R1, · · · ,Rn), Q1(D) = {(z)},
and Q2(D) = {}. The output tuple (z) ∈ Q1(D) \Q2(D), and
the goal is to find a witness D ′ = (R′

1
, · · · ,

R′
n) for (z) where R

′
i ⊆ Ri for all i ∈ [1,n].

We show that there exists a vertex cover C in G of size ≤ p
if and only if there is a witness D ′

for (z) of size ≤ p.
The “Only If” direction. Consider a vertex cover C of

G such that |C | ≤ p. If vi ∈ C , then R′
i = {(z)}, otherwise

R′
i = {}. Since C is a vertex cover, all edges must be covered.

For an edge ei = (vj ,vℓ), suppose wlog. vj ∈ C . Hence
the subquery qi = R j ∪ Rℓ returns (z) on D ′

. Therefore,

Q1(D
′) = (z),Q2(D

′) = {}, (z) ∈ Q1(D
′) \Q2(D

′), i.e., D ′
is a

witness for (z), and |D ′ | = |C | ≤ p.
The “If” direction. Consider anywitnessD ′ = (R′

1
, ...,R′

n)

where R′
1
⊆ R1, ...,R

′
n ⊆ Rn and |R′

1
| + ... + |R′

n | ≤ p, such
that (z) ∈ Q1(D

′) \ Q2(D
′), i.e., (z) ∈ Q1(D

′). Since Ri had
only one tuple (z), either R′

i has (z) or it is empty. If tuple

(z) ∈ R′
i , then we add vertexvi to a setC . If (z) is in the result

of Q1(D
′), (z) must be in the result of all subqueries qi (D

′)

for all i ∈ [1,m]. For ei = (vj ,vℓ), qi (D
′) returns (z) if and

only if at least one of R′
j and R

′
ℓ
is not empty; otherwise qi

returns an empty result and thus Q1 returns an empty result.

Therefore, for each edge ei ∈ E, at least one of its adjacent
vertices vj or vℓ must exist in C . Hence C is a vertex cover,

and |C | = |D ′ | ≤ p. □

On the other hand, the following theorem shows that if all

unions appear after all joins (which we call JU
∗
queries), then

the SWP can be solved in poly-time in combined complexity.

Theorem 5. The SWP for two JU
∗
queries is polynomial

time solvable in combined complexity.

Proof. Let t ∈ Q1(D)\Q2(D). According to Theorem 1, the

SWP for SJ queries is polynomial time solvable in combined

complexity. Hence, we look for the smallest witness of t
in join-only part of Q1, and choose the one with smallest

number of tuples. The running time is polynomial in both

n = |D | and k . □

A.4 Size-Bounded SPJU Queries

Theorem 6 shows that if the SPJU queries are of bounded size

(i.e. considering more standard data complexity), there is a

polynomial time algorithm for SWP. We prove this theorem

using Proposition A.1, which is intuitive and known (e.g.,

[32]). We usem-DNF to refer to a DNF where each minterm

has at mostm literals.

Proposition A.1. Given an SPJU query Q , a database in-
stanceD, and an output tuple t ∈ Q(D), the how-provenance of
t in Q(D) can be transformed into a k + 1-DNF in polynomial

time when Q is of bounded size, where k is the number of join

operations in Q .

Theorem 6. The SWP for two SPJU queries is polynomial-

time solvable in data complexity.

Proof. Let t be an output tuple in Q1(D) \ Q2(D). Since
Q2 is monotone, t < Q2(D

′) for any D ′ ⊆ D. According
to Proposition A.1, we can compute the how-provenance

Prv(Q1−Q2)(D)(t) in DNF in poly-time in data complexity. Then

we scan the DNF to find the minterm with least number of

literals, and this minterm represents the smallest witness

for t in Q1(D) − Q2(D). The literals in this clause are the

identifiers of tuples in the smallest witness. □

For instance, if Prv(t) = a + bc , then a forms the smallest

witness.

A.5 Queries Involving Difference

Before discussing general SPJUD queries, let’s focus on one

special class of SPJUD queries where all differences appear

after all SPJU operators (which we call SPJUD
∗
queries). More

formally, we define this class using formal grammar: Q →

q+ |Q−Q , where q+ is a terminal that represents SPJU queries.

For instance, queries Q1 and Q2 in Example 1 are SPJUD
∗

queries. The following theorem shows that the SWP can be

solved in poly-time for SPJUD
∗
queries.

Theorem 7. The SWP for two SPJUD
∗
queries is polynomial-

time solvable in data complexity.

17

Proof. Let t be an output tuple in Q1(D) \ Q2(D). Since
Q1 and Q2 are SPJUD

∗
queries that can be written as nested

differences of queries like q1−q2−(q3−(q4−q5))− ..., where
allqi -s are SPJU queries,Q1−Q2 is also an SPJUD

∗
query. The

output tuple t must be either in or not in the result of each

qi . We find the smallest witness by enumerating the minimal

witnesses of t w.r.t. every qi and D. If t is in the result of

qi (D), let wi be the set of minimal witnesses of t w.r.t. qi
and D. Then we pick one element from everywi ∪ {∅}, and

construct w as the union of all witnesses or the empty set

we picked. We evaluate Q1 and Q2 on w to see whether it

is a witness for t , and record thew of the smallest size. We

finish this procedure until we enumerate all combinations.

This procedure will return the smallest witness because:

(i) if t < qi (D), t will also not be in qi (w) for any w ⊆ D
due to monotonicity, so we don’t need to consider such qi -s;
(ii) Assume that w ′

is a smallest witness of t w.r.t. Q1 −Q2

and D, for all qi where t ∈ qi (w
′), w ′

must be a superset

of a minimal witness of t w.r.t. qi and D. Hencew
′
must be

the union of minimal witnesses of t w.r.t. these qi -s and D;
otherwise, ifw ′

is a strict superset of the union of minimal

witnesses of t , we can always remove tuples not belong to

any minimal witness of t w.r.t. qi -s and D fromw ′
, without

affecting t to be in or not in any qi , which contradicts the

assumption thatw ′
is a smallest witness. Therefore a smallest

witness of t w.r.t. Q1 −Q2 and D must be union of minimal

witness of t w.r.t. qi and D, and thus it must be enumerated

during the enumeration procedure.

The time complexity of entire enumeration process is

O(Πim
ki) = O(mkd), where d is the number of difference op-

erators, m is themax size of relations, k is themax complexity

of each SPJU queryqi . When queries are of bounded sizes, i.e.,

fix d and k, the SWP for two SPJUD queries that can be writ-

ten as nested differences of SPJU queries is polynomial-time

solvable. □

SWP is NP-hard in general even for bounded-size queries.

Theorem 8. The SWP for two SPJUD queries Q1 and Q2 is

NP-hard in data complexity.

Proof. We again give a reduction from the vertex cover

problem with vertex degree at most 3 (see Theorem 3).

Construction. Suppose in G = (V ,E), V = {v1, ...,vn},
E = {e1, · · · , em}.We construct two relationsR(A,Z ,E1,E2,E3)
and S(B,C,Z). For each vertex vi ∈ V , R contains a tuple

ti = (vi , ei1, ei2, ei3, z), where ei1 , ei2 , ei3 are the identifiers

of edges adjacent to vi , i1 < i2 < i3. If the degree of vi is
less than 3, the identifiers are replaced by a null symbol “∗”.

Here z is a constant. For each edge ei ∈ E, S contains a tuple

(ei , e(i%m)+1, z, z), where e(i%m)+1 is the identifier of the next

edge in the edge list (the next edge of em is e1). Let D = (R, S)
be the database instance.

Next, we construct an SPJUD query that consists of sev-

eral subqueries as follows: Let q1 (on S) = πZ (S); q2 (on S)
= πB,Z (S); q3 (on R, S)=πS .C,S .Z (S ZS .C=E1∨S .C=E2∨S .C=E3 R).
Then we construct Q1 = q1, hence Q1(D) = {(z)}. We also

construct Q2 = πZ (q2 \ q3) (assume C in q3 is renamed

to B). For edge ei = (vj ,vℓ), the edge ei appears for both
tuples tj , tℓ (in one of E1,E2,E3 attributes), and therefore,

(ei , z) appears in the result of q3(D) for every i ∈ [1,m].

Hence q3(D) = πB,Z (S). So q2(D) \ q3(D) = ∅. Then (Q1 −

Q2)(D) = {(z)}, and the goal is to find the smallest wit-

ness for (z). For the vertex cover instance in Figure 11(a), R
will be as given in Figures 11(c), and S will contain tuples

{(e1, e2, z), (e2, e3, z), · · · (e7, e1, z)}.
We now show that there exists a vertex cover C of size

at most p in the graph G if and only if there is a witness

D ′ = (R′, S ′) where |R′ | + |S ′ | ≤ p +m.

The “Only If” direction. Suppose we are given a vertex

coverC ofG with atmostk vertices. ConstructR′{ti |vi ∈ C},
and S ′ = S . Q1(D) = Q1(D

′) = {(z)} since S is unchanged.

Similarly, q2(D
′) = πB,Z (S)) is unchanged. SinceC is a vertex

cover, for every edge ei = (vj ,vℓ) either ti or tℓ is in R′
, and

hence q3(D
′) = q3(D), i.e., each (ei , z), i ∈ [1,m] appears in

q3(D
′). Hence Q1 − Q2 will output tuple (z) on D ′

, |R′ | =

|C | ≤ p, |S ′ | = |S | =m, and we get a witness of at most p+m
tuples.

The “If” direction. Consider any witness D ′ = (R′, S ′)
where R′ ⊆ R, S ′ ⊆ S, |R′ | + |S ′ | ≤ p +m, such that (z) ∈
Q1(D

′) \ Q2(D
′). We construct C = {vi | ti ∈ R′}. Since (z)

is in Q1(D
′) \Q2(D

′), (z) must be in the result of q1(S
′), and

not in the result of q2(S
′) − q3(R

′, S ′), hence S ′ must contain

at least one tuple. Therefore, q2(S
′) outputs at least one tuple

(ei , z) since S
′
is not empty. In turn, q3(R

′, S ′) must output

all tuples in q2(S
′) to make q2(S

′) − q3(R
′, S ′) empty. (a) We

argue that S ′ = S . Suppose S ′ contains at least one tuple, say
wlog, (e1, e2, z). Then to remove (e1, z) from q2(S

′)\q3(R
′, S ′),

q3(R
′, S ′) must contain (e1, z), which can generate only from

S(em , e1, z). Hence (em , e1, z) ∈ S ′. In turn, (em , z) ∈ q2(S
′).

To remove it, we need S(em−1, em , z) in S ′. Continuing this

argument (by induction), we get S = S ′. (b) Consider any
tuple, say wlog., (e1, e2, z) in S ′. Then to remove (e1, z) from
q2(S

′) \ q3(R
′, S ′), not only the tuple (em , e1, z) ∈ S ′, it also

has to satisfy the join condition with R. This will hold only

if for one of the end points vj ,vℓ of e1 = (vj ,vℓ), tj ∈ R′

or tℓ ∈ R′
. This should hold for all edges, and therefore the

set C we constructed is a vertex cover. Since |S ′ | = |S | =m,

|R′ | = |C | ≤ p, therefore, we get a vertex cover in G of size

at most p.
The queries we constructed during the reduction are all

of bounded size, therefore the SWP for two SPJUD queries

is NP-hard in data complexity even for queries of bounded

size. □

18

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Smallest Counterexample Problem
	2.2 Smallest Witness Problem
	2.3 Boolean How-Provenance

	3 Complexity for SPJUD Queries
	4 A Constraint-based General Solution for SPJUD Queries
	4.1 Passing How-Provenance to a Solver
	4.2 Optimizing the Basic Approach
	4.3 Handling Database Constraints

	5 Aggregate Queries
	5.1 Challenges with Aggregate Queries
	5.2 Applying Provenance for Aggregates
	5.3 Optimizations

	6 Implementation
	7 Experiments
	7.1 Real World SPJUD Queries
	7.2 Synthetic Aggregate Queries

	8 User Study
	9 Related Work
	References
	A Proofs of Theorems in Section 3
	A.1 SJ and SPU Queries
	A.2 PJ Queries
	A.3 JU Queries
	A.4 Size-Bounded SPJU Queries
	A.5 Queries Involving Difference

